

Scheme and Syllabus

B.E in Electrical and Electronics Engineering

For 2020-21 Admitted Batch

Department of Electrical and Electronics Engineering Basaveshwar Engineering College Bagalkote-587102

Vision and Mission of the College

Vision

To be recognized as a premier technical institute committed to developing exemplary professionals, offering research based innovative solutions and inspiring inventions for holistic socio-economic development

Mission

- To pursue excellence through student centric dynamic teaching-learning processes, encouraging freedom of inquiry and openness to change.
- To carry out innovative cutting edge research and transfer technology for industrial and societal needs.
- To imbibe moral and ethical values and develop compassionate, humane professionals.

Vision and Mission of the Department

Vision

To be in the global forefront of Academic Excellence, Research, and Innovation in Electrical and Electronics Engineering to influence and meet the energy, environment, industrial and societal needs.

Mission

- To practice dynamic teaching-learning processes adapting to ongoing global technological developments in the field of Electrical and Electronics Engineering.
- To involve ourselves in national/international (industry/institute) collaborations for higher studies, research, development and innovation.
- To carryout inter-disciplinary projects, skill development activities and field visits to imbibe real life experiences in students.
- To render empathetical services to resolve energy, ecology and environmental issues.

Programme Educational Objectives (PEOs)

After successful completion of the program:

- **PEO1:** The graduates will be able to pursue professional career
- **PEO2:** The graduates will be able to take up higher studies and research
- **PEO3:** The graduates will be able to engage in multi-disciplinary innovation and entrepreneurship activities
- **PEO4:** The graduates will be able to adopt emerging technologies to provide solutions to the societal and environmental issues

Programme Specific Outcomes (PSOs)

After successful completion of the program:

- **PSO1:** Specify, formulate and analyze concepts used in power systems and electrical machines as per requirements of power & energy sector
- PSO2: Identify, analyze, design and test technologies used in power electronics, electronic & signal processing circuits and control systems
- **PSO3:** Apply conventional concepts and contemporary tools to design, simulate and analyze electrical and electronic systems for real time applications through hands on learning gained in SCADA, energy systems and power electronics laboratories

Program Outcomes as defined by NBA (POs)

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Basaveshwar Engineering College (Autonomous), Bagalkot DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Scheme of Teaching and Evaluation for B.E Electrical and Electronics Engineering based on Joint Board Meeting held on <u>09.05.2020 and 22.05.2021</u>

2020-21 (admitted batch), 2021-22 (sem 3&4), 2022-23 (sem 5&6), 2023-24 (sem 7&8)

Total Credits for BE =175 (as per VTU/AICTE); Min Cr/sem=16; Max Cr/sem=28; Ave=22

Breakdown of Credits suggested by the VTU Belagavi/ AICTE New Delhi

SI.	Undergraduate Programme		Current Credits	% allotted by EE	% range as per VTU
1	HSS + Soft skills + UHV-2 + Kannada + English [2X3+1x3+0+1+	1]	11	06.3	5-10
2	Basic Sciences		25	14.3	10-20
3	Engg. Sciences		20	11.4	10-20
4	Professional Core Courses		69	39.4	30-40
	Advanced C Programming Lab – 2 credits (Mandatory a				
	sem, common for circuit branches)				
5	Dept. Electives		18	10.3	10-15
6	Open Elective at V, VI & VII (3+3+3)		9	05.1	5-10
7	Online course (3)		3	01.7	
8	Mini project (VI)	2			
	Internship (Min 6 weeks from IV-VI), Registration &	2			
	Evaluation in -VII)		20	11.4	10-15
	Seminar (VII)	1			
	Project (VIII)	15			
	Total		175	100	100

First Year Course

Subject	Credits	Contact hours
Basic Electrical Engineering	2 (L)+1 (T)	Lectures 2 Hours/week + Tutorial 2 Hours/week

Semester Wise Credit Distribution for Semester-III to VIII

			Sem	esters					% of total	% range						
Particulars	ш	IV	v	VI	VII	VIII	То	otal	credits	as per VTU						
Core + Lab	16+3	16+3	12+3	6+2+2	6+2			71	39.4	30-40						
Dept. Electives		-	3	3	3	3+3+3		18	10.3	10-15						
Open Electives			3	3	3		9		9		9		9		05.1	05-10
Online Course					3		3		3		01.7					
Mini Project				2			2									
Internship					2		2	10	11.0	10.15						
Technical Seminar					1		1	18	11.0	10-15						
Project						13	13									
HSS + Soft Skills		1	1	3+1	3		9									
UHV-2 (Mandatory)		-							05.7	5-10						
Kannada (HSS)		1					1									
Maths	3	3					6									
Total	22	24	22	22	23	22		135								

* additional online course (student's choice)

	Semeste	er-I Physics Group (Common to bra	branches EE, EC EI, CS, IS & AI)								
cI	Sub Codo	a Code Subject	(Hrs	/ W	eek	Exam Marks				
51.	Sub Code	Subject	C	Ц	H	Ρ	CIE	SEE	Total		
01	UMA161C	Engineering Mathematics -I	4.0	3	2	0	50	50	100		
02	UPH162C	Engineering Physics	4.0	3	2	0	50	50	100		
03	UEE164C	Basic Electrical Engineering	3.0	2	2	0	50	50	100		
04	UCS165C	Programming with C	3.0	3	I	0	50	50	100		
05	UEC169C	Basic Electronics	3.0	2	2	0	50	50	100		
06	UPH166L	Engineering Physics Laboratory	1.5	0	0	3	50	50	100		
07	UCS167L	C Programming Laboratory	1.5	0	0	3	50	50	100		
08	UHS126M	Constitution of India*	0	2	0	0	50	50	100		
	Total				8	6	400	400	800		

Semester-II Chemistry Group

(Common to branches EE, EC EI, CS, IS & AI)

SL Sub Cod	Sub Codo	Subject	C	Hrs	5/ W	eek	Exam Marks			
51.	Sub Code	Subject	C	L	Т	Ρ	CIE	SEE	Total	
01	UMA261C	Engineering Mathematics -I	4.0	3	2	0	50	50	100	
02	UME263C	Elements of Mechanical Engineering	3.0	2	2	0	50	50	100	
03	UCH268C	Engineering Chemistry	4.0	3	2	0	50	50	100	
04	UCV270C	Engineering Mechanics	3.0	2	2	0	50	50	100	
05	UCH272L	Engineering Chemistry Laboratory	1.5	0	0	3	50	50	100	
06	UME275L	Computer Aided Engineering Graphics	2.0	0	0	4	50	50	100	
07	UBE176L	Basic Engineering Laboratory	1.5	0	0	4	100	•	100	
08	UHS177C	English for Engineers	1.0	2	0	0	50	50	100	
09	UBT233M	Environmental Studies*	0	2	0	0	50	50	100	
		Total	20	14	08	11	500	400	900	

	Semester-3	Semester-3 CAY 2021-22 (175 Credits 2020-21 admitted batch)										
cl	Cub Code	Subject		Hrs	s/ We	eek	Exam Marks					
51.	Sub Code	Subject	Ľ	L	Т	Ρ	CIE	SEE	Total			
01	UMA391C	Numerical Techniques and Integral Transforms	3	3	0	0	50	50	100			
02	UEE351C	Analog and Digital Electronics	4	4	0	0	50	50	100			
03	UEE352C	Network Analysis	4	3	2	0	50	50	100			
04	UEE353C	Electrical and Electronics Measurements	4	4	0	0	50	50	100			
05	UEE354C	Transformers and Induction Machines	4	4	0	0	50	50	100			
06	UEE355L	Transformers and Induction Machines Laboratory	1	0	0	2	50	50	100			
07	UEE356L	Electrical & Electronic Measurement Laboratory	1	0	0	2	50	50	100			
08	UEE357L	Network Analysis Laboratory	1	0	0	2	50	50	100			
09	UMA330M	Bridge Course Mathematics-I*	0	3	0	0	50	50	100			
10	UBT133M	Environmental Studies**	0	2	0	0	50	50	100			
		22	23	02	06	550	550	1100				

*Bridge Course Mathematics-I	:	is a mandatory subject only for students admitted to 3 rd Semester through lateral entry scheme (Diploma quota). Passing the subject is compulsory, however marks will not be considered for awarding grade/class. A PP/NP grade will be awarded for passing/not passing the subject.
**Environmental Studies	:	is a mandatory subject for lateral entry students. Question Paper will be of Objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade / Class / Rank.

Semester-4

CAY 2021-22 (175 Credits 2020-21 admitted batch)

CI	SL Sub Code	Subject	C	Hrs	5/ We	eek	Exam Marks			
51.	Sub Code	Subject	C	L	Н	Ρ	CIE	SEE	Total	
01	UMA491C	Statistics and Probability distribution	3	З	0	0	50	50	100	
02	UEE451C	Signals and Systems	4	ŝ	2	0	50	50	100	
03	UEE452C	Power Electronics	4	4	0	0	50	50	100	
04	UEE453C	Operational Amplifiers and Linear IC's	4	4	0	0	50	50	100	
05	UEE454C	DC Machines and Synchronous Machines	4	4	0	0	50	50	100	
06	UEE456L	Power Electronics Laboratory	1	0	0	2	50	50	100	
07	UEE457L	DC Machines and Synchronous Machines Laboratory	1	0	0	2	50	50	100	
08	UEE458L	Linear IC's Laboratory	1	0	0	2	50	50	100	
09	UHS001N	Fundamentals of Quantitative Aptitude & Soft Skills	1	2	0	0	50	50	100	
10	UHS488C	Saamskrutika Kannada***	1	2	0	0	50	50	50	
		OR								
10	UHS489C	Balake Kannada***	1	2	0	0	50	50	50	
11	UMA430M	Bridge Course Mathematics-II*	0	3	0	0	50	50	100	
12	UHS226M	Constitution of India**	0	2	0	0	50	50	100	
13	UHS004M	Universal Human Values-II	0	3	0	0	50	50	100	
		Total	24	27	04	06	650	650	1300	

*Bridge Course Mathematics –II	:	is a mandatory subject only for students admitted to 4 th Semester through lateral entry scheme (Diploma quota). Passing the subject is compulsory, however marks will not be considered for awarding grade /class. A PP/NP grade will be awarded for passing/not passing the subject.
**Constitution of India	:	is a mandatory subject for lateral entry students. Question Paper will be of Objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade / Class /Rank.
***Saamskrutika Kannada ***Balake Kannada	:	Is for students who speak read and write kannada Is for non-kannada speaking reading and writing

	Semester-5	emester-5 CAY 2022-23 (175 Credits 2020-21 admitted								
cl	Sub Code	Subject		Hrs	s/ We	eek	Exam Marks			
51.	Sub Code	Subject	C	L	Т	Ρ	CIE	SEE	Total	
01	UEE551C	Field Theory	3	2	2	0	50	50	100	
02	UEE552C	Digital Signal Processing	3	2	2	0	50	50	100	
03	UEE553C	Control Systems	3	2	2	0	50	50	100	
04	UEE554C	Generation Transmission and Distribution	3	3	0	0	50	50	100	
05	UEE5XXE	Dept. Elective – 1	3	3	0	0	50	50	100	
06	UEE5XXN	Open Elective – 1	3	3	0	0	50	50	100	
07	UEE561L	Digital Signal Processing Laboratory	1	0	0	2	50	50	100	
08	UEE562L	Control System Laboratory	1	0	0	2	50	50	100	
09	UEE563L	Analog and Digital Laboratory	1	0	0	2	50	50	100	
10	UHS002N	Advanced Quantitative Aptitude and Soft Skills	1	2	0	0	50	50	100	
		Total	22	20	00	06	500	500	1000	

List of Elective Subjects

Fundamentals of Solar Thermal ECS	Electrical Engineering Materials
Electrical Machine Design	Electrical Engineering Materials
Testing and Commissioning of Electrical Equipment	Micro Electro Mechanical Systems
Advanced Power Electronics	Reactive Power management
Fundamentals of Solar Thermal ECS	

List of Open Electives Subjects @ 5th Sem

Renewable Energy Resources

MATLAB for Engineers

	Semester-6 CAY 2022-23 (175 Credits 2020-21 admitted								
cI	Sub Code	Subject		Hrs	5/ We	eek	Ex	arks	
51.	Sub Code	Subject	C	L	Т	Ρ	CIE	SEE	Total
01	UEE651C	Power System Analysis and Stability	3	2	2	0	50	50	100
02	UEE652C	Microcontrollers	3	3	0	0	50	50	100
03	UEE653H	Management and Entrepreneurship	3	3	0	0	50	50	100
04	UEE6XXE	Dept. Elective – 2	3	3	0	0	50	50	100
05	UEE6XXN	Open Elective – 2	3	3	0	0	50	50	100
06	UEE661L	Microcontrollers & IoT Laboratory	1	0	0	2	50	50	100
07	UEE662L	Electrical Auto CAD Laboratory	1	0	0	2	50	50	100
08	UEE665P	Mini Project	2	0	0	4	50	50	100
09	UCS659L	Advanced C P Laboratory (mandatory)	2	0	2	2	50	50	100
10	UHS003N	Career Planning and Professional Skills	1	2	0	0	50	50	100
		Total	22	20	02	10	550	550	1100

List of Elective Subjects

Modern Control Theory	VLSI Design and Applications
Electrical safety in Industrial plants	Battery Management
Electrical Power Utilization and Drives	Energy Efficient Motors
Fundamentals of Wind Energy Conversion Systems	Computer aided electrical drawing

List of Open Electives Subjects @ 6th Sem Electric Vehicle Fundamentals of Wind Energy Conversion Systems

Universal Human Values-II	:	is a mandatory subject for all EE students admitted to 6 th sem. Students have to pass the subject compulsorily,
		however marks will not be considered for awarding Grade / Class /Rank. A PP/NP grade will be awarded for
		passing/not passing the subject.

S	emester-7	CAY 2023-24 (175 Credits 2020-21 admitted batch)							
SL Sub Code		Subject	6	Hrs/ Week			Exam Marks		
51.	Sub Code	Subject		L	Т	Ρ	CIE	SEE	Total
01	UEE751C	Computer Applications to Power System	3	3	0	0	50	50	100
02	UEE752C	High Voltage, Switchgear and Protection	3	3	0	0	50	50	100
03	UHS753C	Intellectual Property Rights	3	3	0	0	50	50	100
04	UEE7XXE	Department Elective – 3	3	3	0	0	50	50	100
05	UEE7XXN	Open Elective – 3	3	3	0	0	50	50	100
06	UEE761L	Power System Simulation Laboratory	1	0	0	2	50	50	100
07	UEE762L	High Voltage and Relay Laboratory	1	0	0	2	50	50	100
08	UEE764I	Internship*	2	0	0	*	70	30	100
09	UEE765S	Technical Seminar	1	0	0	2	50	50	100
10	UEEXXXX	MOOCS online course (4/8/12 weeks)	3	0	0	0	0	0	100
		Total	23	15	0	04	400	400	900

* Working hours will be as per scheduled working hours prescribed by the industry.

List of Elective Subjects

Electrical Machine Drives	Operation Research		
Solar Photovoltaic System Design	Standards and Indian Electricity Act		
Professional Communication and Technical Writing	Autotronics (Automotive Electronics)		
AI Applications to Power Systems	Embedded System and PLC		

List of Open Electives Subjects @ 7 th Sem					
Energy conservation in Industrial Systems	Electrical Safety for Engineers				

Semester-8CAY 2023-24 (175 Credits 2020-21 admitted batch)										
cl	Sub Code	de Subject C		Hrs	Hrs/ Week			Exam Marks		
51.	Sub Code			L	Т	Ρ	CIE	SEE	Total	
01	UEE8XXE Dept. Elective – 4		3	3	0	0	50	50	100	
02 UEE8XXE Dept. Elective – 5		3	3	0	0	50	50	100		
03 UEE8XXE Dept. Elective – 6		3	3	0	0	50	50	100		
04 UEE871P Project Work (Industry or Inhouse R&D labs)		13	0	0	26	50	50	100		
	Total		22	6	0	26	150	150	300	

List of Elective Subjects

Power System Operation and Control	Speech Signal processing
Power System Dynamics and Stability	Over Voltages in Power Systems
Data Base management Systems	HVDC Transmission
Energy Conservation, Audit and DSM	Advances in Instrumentation
Flexible AC Transmission Systems	Power System Planning
Digital Control Systems	Smart Grids

Syllabus for **B.E. I/II - Semester** for academic year 2020 – 2021

(For students admitted to I year in 2020-21)

Syllabus for B.E. I / II - Semesters for academic year 2020 – 2021

(For students admitted to I year in 2020-21)

Basic Elect	rical Engineering				
Subject Code: UEE164C/264C	Credits: 03				
Contact Hours: 04 (2L - 2T - 0P)	Assessment: CIE 50 and SEE 50				
· · · · · · · · · · · · · · · · · · ·					
	Unit-I				
	L-06 Hours, T-07 Hours				
Electromagnetism:					
 Series and parallel magnetic circuits, Cor Faradays laws, Lenz's law, Fleming's rule mutual inductance, coefficient of couplin DC Circuits: 	nparison between magnetic and electric circuits. es, statically and dynamically induced emf, Self and ng, Energy stored in a magnetic field.				
KCL KVL Obm's law Mesh current and I	Node voltage Analysis				
• KCL, KVL, Ohim's law, Mesh current and I	Init-II				
	L-07 Hours T-06 Hours				
Single Phase AC Circuits:					
 Generation of sinusoidal voltages, Pha operator, Voltage and Current Relations L, R-C & R-L-C series circuits, R-L-C Paral 	se & phase difference of sinusoidal waveform, J- hips, Instantaneous and Average power in R, L, C, R- lel circuits.				
Transformer:					
 Types, Construction and principle of operation, Losses and efficiency. 	operation, EMF equation, No load and On load				
	Unit-III				
	L-07 Hours, T-06 Hours				
Three Phase AC Circuits:					
 Generation of three phase AC voltage, Pl star and delta connections, Advantages of Measurement of power using two watt factor in terms of wattmeter readings, E Generators : 	hase sequence, Voltage and Current relationship for of three phase supply over single phase. tmeters (for balanced load), Expression for power ffect of power factor on wattmeter readings.				
DC Generator: Construction, Principle of	operation, emf equation. Types,				
AC Generator: Types, Construction, Print	ciple of operation, emf equation excluding Kp & Kd.				
	L-07 Hours. T-06 Hours				
Motors :	,				
• DC Motor: Principle of operation, Back en	mf, Mechanical power developed, Torque equation,				
Types and Applications, Characteristics of	of motors, Necessity of starters, Three point starter.				
AC Motor: Types, Construction and prir	nciple of operation of three phase induction motor,				
Production of rotating magnetic field, I	Frequency of rotor current, Slip, Torque equation,				
Torque slip characteristics, Applications,	Star-Delta starter.				
Electrical Wiring and Safety:					
• Fuses, Necessity of Earthing, Types of Ea	rthing				
Electrical wiring, Calculation of energy co	onsumption and billing				

Syllabus for B.E. I / II - Semesters for academic year 2020 – 2021

(For students admitted to I year in 2020-21)

Text Books:

- 1. B.L Theraja, "Fundamentals of Electrical Engineering and Electronics", S. Chand Publications, 27th Edition, 2008
- 2. Edward Hughes, "Electrical and Electronic Technology", Pearson Publications, 10th Edition, 2010

Reference Books:

- Rajendra Prasad, "Fundamentals of Electrical Engineering", 2nd Edition, PHI Learning, 2009
- 2. V.N.Mittle & A.Mittal, "Basic Electrical Engineering", Tata McGraw-Hill Education, 2005
- 3. S. K. Bhattacharya, "Basic Electrical and Electronics Engineering", 2nd Edition, Pearson Publications, 2017

Course outcomes:

After completion of the course, students shall be able to:

- Recall basics of magnetic circuits, electromagnetism, single phase & three phase circuits and electrical earthing
- Illustrate the laws of magnetic & electric circuits, concepts of single phase & three phase AC circuits, Operation of transformer and AC & DC machines, characteristics curves and domestic wiring practices
- Derive the expressions for statically & dynamically induced emf, Self & mutual inductances, power in AC series & parallel circuits
- Develop the emf equations for transformer, DC-AC generators and torque equations of DC motor & induction motors
- Calculate different parameters related to magnetic circuits, DC circuits, single phase & three phase AC circuits, AC & DC machines.
- Apply the laws & theorems of magnetic and electric circuits to analyze & evaluate the circuit parameters

Syllabus for **B.E. III - Semester** for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Syllabus for B.E. III - Semester for academic year 2021 – 2022

UMA391C Numerical Techniques and Integral Transforms 03 - Credits (3 : 0 : 0) CIE Marks : 50 Total Hours : 40 CIE Marks : 50 UNIT - I (10 Hours) Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton- Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof). Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method. (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Hilgher Engineering Mathematics", Khanna Publishers, New Delhi. <th>UMA391C Hours/Week : 03 Total Hours : 40</th> <th></th> <th colspan="5">(For students admitted to I year in 2020-21)</th>	UMA391C Hours/Week : 03 Total Hours : 40		(For students admitted to I year in 2020-21)					
Hours/Week : 03 Total Hours : 40TransformsCIE Marks : 50 SEE Marks : 50UNIT – I(10 Hours)Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton- Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof), Lagrange's and Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method.(10 Hours)UNIT – II(10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis.UNIT – IV(10 Hours)Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books:1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	Hours/Week : 03 Total Hours : 40	Numerical Techniques and Integral	03 - Cre	edits (3 : 0 : 0)				
Total Hours : 40SEE Marks : 50UNIT – I(10 Hours)Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton- Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof).Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's 	Total Hours : 40	Numerical Techniques and integral	CIE	Marks : 50				
UNIT - I(10 Hours)Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton- Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof).UNIT - II(10 Hours)Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method.Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuites, even and odd functions. Half-range series, practical harmonic analysis.Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, line=ity property, damping rule, shifting rule-problems.Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram		Hours : 40		SEE Marks : 50				
UNIT – I(10 Hours)Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton- Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof).UNIT – II(10 Hours)Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Wified Euler's method, Runge-Kutta 4 th order method.Fourier series: Periodic functions, Conditions for Fourier series expansions. Fourier series expansion of continuous and functions having finite number of discontinue, every od functions. Half-range series, practical harmonic analysis.Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, lin-erse Fourier sine and cosine transforms. Z-transforms								
Numerical Analysis-I: Introduction to root finding problems, Bisection Method, Newton-Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof).UNIT – II(10 Hours)Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method.(10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis.(10 Hours)Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books:1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.2. Dr. B.S. Grewal, "Higher Engineering Mathematics", S. Chand & company Ltd. Ram		UNIT – I		(10 Hours)				
 Raphson method. Finite differences, forward and backward difference operators (no derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof). UNIT – II (10 Hours) Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4th order method. UNIT – III (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms, Inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	Numerical Analysis-I:	ntroduction to root finding problems, Bise	ection Met	hod, Newton-				
derivations on relations between operators) Newton-Gregory forward and backward interpolation formulae. (Without proof). Lagrange's and Newton's divided difference interpolation formulae (without proof). UNIT – II (10 Hours) Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method. UNIT – III (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	Raphson method. Fini	Raphson method. Finite differences, forward and backward difference operators (no						
interpolation formulae. (Without proof), Lagrange's and Newton's divided difference interpolation formulae (without proof). UNIT – II (10 Hours) Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method. UNIT – III (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	derivations on relation	derivations on relations between operators) Newton-Gregory forward and backward						
interpolation formulae (without proof).UNIT – II(10 Hours)Numerical Analysis-II: Numerical differentiation using Newton's forward and backwardformulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth ruleand Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler'smethod, Runge-Kutta 4 th order method.Conter series: Periodic functions, Conditions for Fourier series expansions, Fourier seriesexpansion of continuous and functions having finite number of discontinuites, even and odd functions. Half-range series, practical harmonic analysis.UNIT – IV(10 Hours)Fourier transforms and z-transforms:Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books:1.Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.2.Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3.3.H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	interpolation formulae	e. (Without proof), Lagrange's and Newt	on's divid	led difference				
UNIT – II(10 Hours)Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method.(10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis.(10 Hours)Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.2. Dr. B.S. Grewal, "Higher Engineering Mathematics", S. Chand & company Ltd. Ram	interpolation formulae	(without proof).						
Numerical Analysis-II: Numerical differentiation using Newton's forward and backward formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method. UNIT – III (10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours)Fourier transforms and z-transforms:Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books: 1.Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2.Dr. B.S. Grewal, "Higher Engineering Mathematics", S. Chand & company Ltd. Ram		UNIT – II		(10 Hours)				
formulae-problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4 th order method. UNIT – III (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	Numerical Analysis-II:	Numerical differentiation using Newton's	forward	and backward				
 and Weddle's rule (no derivation of any formulae)-problems. Euler's and Modified Euler's method, Runge-Kutta 4th order method. UNIT – III (10 Hours) Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	formulae-problems. Tra	apezoidal rule, Simpson's one third rule, Sin	npson's thi	ree eighth rule				
method, Runge-Kutta 4 th order method.UNIT – III(10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis.UNIT – IV(10 Hours)Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books:1.Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.Jr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	and Weddle's rule (no	derivation of any formulae)-problems. Eule	er's and M	odified Euler's				
UNIT – III(10 Hours)Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis.UNIT – IV(10 Hours)Fourier transforms and z-transforms:Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems.Reference Books: 1.1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018.2.Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	method, Runge-Kutta 4	^{In} order method.						
 Fourier series: Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 		UNIT – III		(10 Hours)				
 expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", S. Chand & company Ltd. Ram 	Fourier series: Periodic	c functions, Conditions for Fourier series ex	kpansions,	Fourier series				
Odd functions. Half-range series, practical harmonic analysis. UNIT – IV (10 Hours) Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. Ram	expansion of continuous and functions having finite number of discontinuities, even and							
Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	odd functions. Half-range series, practical harmonic analysis.							
 Fourier transforms and 2-transforms: Infinite Fourier transforms and Inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	F			(10 Hours)				
 transforms- simple properties, Fourier sine and Fourier cosine transforms, inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	Fourier transforms and z-transforms: Infinite Fourier transforms and inverse Fourier							
 damping rule, shifting rule-problems. Reference Books: Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 		nortion. Fourier sine and Fourier easing the	ms and in	verse Fourier				
 Reference Books: 1. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	transforms- simple pro	perties, Fourier sine and Fourier cosine tra	ms and in nsforms, li	nverse Fourier nverse Fourier				
 Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6th Edition, Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	transforms- simple pro sine and cosine transf	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo	ms and in nsforms, li orms, linea	nverse Fourier nverse Fourier arity property,				
 Tata McGraw Hill Publishers, 2018. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	transforms- simple pro sine and cosine transf damping rule, shifting r	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard for rule-problems.	ms and in nsforms, li orms, linea	nverse Fourier nverse Fourier arity property,				
 Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram 	transforms- simple pro sine and cosine transf damping rule, shifting r Reference Books:	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems.	ms and in nsforms, li prms, linea	nverse Fourier nverse Fourier arity property,				
3. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram	transforms- simple pro sine and cosine transf damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for	ms and in nsforms, li prms, linea Engineers	nverse Fourier nverse Fourier arity property, s", 6 th Edition,				
	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 6	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna	ms and in nsforms, li orms, linea Engineers	nverse Fourier nverse Fourier arity property, s", 6 th Edition,				
Nagar. New Delhi.	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, " 3. H. K. Das. "Adva	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics". S. Chan	ms and in nsforms, linea orms, linea Engineers a Publisher d & comp	nverse Fourier nverse Fourier arity property, s", 6 th Edition, rs, New Delhi. pany Ltd. Ram				
4. E Kreyszig, "Advanced Engineering Mathematics", Wiley & Sons, 10 th Edition, 2011.	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, " 3. H. K. Das, "Adva Nagar, New Delh	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan ni.	ms and in nsforms, li orms, linea Engineers Publisher d & comp	nverse Fourier nverse Fourier arity property, s", 6 th Edition, rs, New Delhi. Dany Ltd. Ram				
Course Outcomes:	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, " 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan ni. anced Engineering Mathematics", Wiley & S	ms and in nsforms, lip orms, linea Engineers Publisher d & comp Sons, 10 th l	nverse Fourier nverse Fourier arity property, s", 6 th Edition, rs, New Delhi. Dany Ltd. Ram Edition, 2011.				
After completion of the course, the students shall be able to:	transforms- simple pro sine and cosine transfo damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, " 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes:	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan ii. anced Engineering Mathematics", Wiley & S	ms and in nsforms, linea TEngineers Publisher Id & comp Sons, 10 th I	nverse Fourier nverse Fourier arity property, s", 6 th Edition, rs, New Delhi. Dany Ltd. Ram Edition, 2011.				
1. Solve engineering problems using non-linear equations & Interpolation techniques.	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 4 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan hi. anced Engineering Mathematics", Wiley & S e course, the students shall be able to:	ms and in nsforms, li orms, linea Engineers Publisher d & comp Sons, 10 th l	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. Dany Ltd. Ram Edition, 2011.				
2. Solve problems using numerical differentiation and numerical integration.	transforms- simple pro sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 4 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the 1. Solve engineerin	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan ii. anced Engineering Mathematics", Wiley & S e course, the students shall be able to: g problems using non-linear equations & Ir	ms and in nsforms, lip orms, linea Engineers Publisher d & comp Sons, 10 th l	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. bany Ltd. Ram Edition, 2011.				
3. Capable to perform numerical solutions of ordinary differential equations.	transforms- simple pro- sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 4 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the 1. Solve engineerin 2. Solve problems u	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard fo rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan hi. anced Engineering Mathematics", Wiley & S e course, the students shall be able to: g problems using non-linear equations & Ir using numerical differentiation and numeric	ms and in nsforms, lip orms, linea Engineers Publisher d & comp Sons, 10 th I nterpolatio cal integra	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. Dany Ltd. Ram Edition, 2011.				
4. Break down a wave into its various frequency components using Fourier transform	transforms- simple pro sine and cosine transfo damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, " 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the 1. Solve engineerin 2. Solve problems u 3. Capable to perfo	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard for rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan hi. anced Engineering Mathematics", Wiley & S e course, the students shall be able to: g problems using non-linear equations & Ir using numerical differentiation and numeric orm numerical solutions of ordinary different	ms and in nsforms, linea orms, linea Engineers Publisher d & comp Sons, 10 th l nterpolatio cal integra ntial equat	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. bany Ltd. Ram Edition, 2011. en techniques. tion.				
5. Understand the basic concepts of Fourier transforms and z -transforms, to solve	transforms- simple pro- sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 4 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the 1. Solve engineerin 2. Solve problems u 3. Capable to perfor 4. Break down a wa	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard for rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan hi. anced Engineering Mathematics", Wiley & S e course, the students shall be able to: g problems using non-linear equations & Ir using numerical differentiation and numeric form numerical solutions of ordinary differer ave into its various frequency components	ms and in nsforms, linea orms, linea Engineers Publisher d & comp Sons, 10 th I nterpolatio cal integra ntial equat using Four	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. Dany Ltd. Ram Edition, 2011. Edition, 2011.				
ode, pde and difference equations.	transforms- simple pro- sine and cosine transford damping rule, shifting r Reference Books: 1. Steven Chapra, I Tata McGraw Hil 2. Dr. B.S. Grewal, 4 3. H. K. Das, "Adva Nagar, New Delh 4. E Kreyszig, "Adva Course Outcomes: After completion of the 1. Solve engineerin 2. Solve problems u 3. Capable to perfor 4. Break down a wa 5. Understand the	perties, Fourier sine and Fourier cosine tra orms. Z-transforms-definition, standard for rule-problems. Raymond Canale, "Numerical Methods for Il Publishers, 2018. "Higher Engineering Mathematics", Khanna anced Engineering Mathematics", S. Chan ii. anced Engineering Mathematics", Wiley & S e course, the students shall be able to: g problems using non-linear equations & Ir using numerical differentiation and numeric orm numerical solutions of ordinary different ave into its various frequency components basic concepts of Fourier transforms and	ms and in nsforms, linea orms, linea Engineers Publisher d & comp Sons, 10 th I nterpolatio cal integra ntial equat using Four z -transfo	nverse Fourier nverse Fourier arity property, s", 6 th Edition, s, New Delhi. bany Ltd. Ram Edition, 2011. Edition, 2011. ions. ier transform orms, to solve				

UEE351C		04 - C	redits (4 : 0 : 0)				
Hours/Week : 04	Analog and Digital Electronics	CIE	E Marks : 50				
Total Hours : 52		SEI	E Marks : 50				
	UNIT – I		(13 Hours)				
Diode Circuits: Introdu	ction, clipping circuits, Clipping at two inde	ependent l	evels, Clamping				
Circuits, Comparators,	Full wave rectifier with C filter						
Transistor Biasing: Intr	oduction, Operating point, DC load line, Bia	is stability,	voltage divider				
bias, Derivation of stability factors, Bias compensation.							
	UNIT – II		(13 Hours)				
BJT Low Frequency A	nalysis: Introduction, two port devices.	Hybrid me	odel, transistor				
hybrid model. h - Parar	neters, Analysis of transistor amplifier circ	uit using h	- parameters				
(CE amplifier only)							
Multistage Amplifiers	& Power Amplifier: Introduction, Clas	sification	of Amplifiers,				
Frequency response of	R-C coupled amplifier, Class A large signation	als amplifie	er, Transformer				
coupled power amplifie	er, Class B (Push pull) amplifiers						
Field Effect Transistor	r: Introduction, construction & characte	ristics of	JFETs, transfer				
characteristics, Importa	ant relationships, Depletion & Enhanceme	nt type MC	OSFETs				
	UNIT – III		(13 Hours)				
Number system & Con	nbinational Logic: Number system Definiti	on of com	pinational logic,				
canonical forms, Karna	ugh maps - 3 and 4 variables, incompletely	specified f	unctions (Don't				
Care terms), simplifying	g minterm and maxterm equations						
Minimization Techniq	ues: Quine- McClusky minimization tecl	nique, Q	uine- McClusky				
using Don't Care terms	, Map entered variables						
Analysis and Design of	Combinational Logic :						
Adders and subtract	ors, Cascading full adders, look ahea	d carry	adders, binary				
comparators, Codes &	Code converter.						
	UNIT – IV		(13 Hours)				
Analysis and Design o	f Combinational Logic: Decoders -BCD De	coders, ei	ncoders. Digital				
multiplexers, multiplex	ers as Boolean function generators.						
Sequential Circuits 1:	Basic bistable element, latches, SR latch	, Applicati	on of SR latch,				
gated D latch, Master -	Slave SR flip - flops (pulse-triggered flip-fl	ops). Mast	er slave JK flip -				
flop. Conversion of flip	flop. Conversion of flip-flop from one type to another						
Sequential Circuits 2:							
Characteristic equations, registers, counters - binary ripple counters, synchronous binary							
counters, counter based on shift registers, design of synchronous counters, design of							
synchronous mod-6 co	synchronous mod-6 counter using clocked D, T, JK and SR flip- flops						
Reference Books:							
1. Boyle stead and	Nashelesky, "Electronic Devices and Circ	uit theory	" 11th edition,				
Pearson, 2013.			2010				
2. Jacob IVIIIman and	a Christos C. Haikias, "Integrated Electroni	CS, IIVIH,	2010. TNALL 2016				
3. Albert Iviaivino an	u Daviu J Bates, Electronic Principles", 8t	n eartion,	niversity Press				
4. David A. Bell, Ele	ectionic Devices and Circuits, 5th edition	, Oxiora U	inversity Press,				
2008.	2008.						

- 5. S.Samuel, Mahadevaswamy and V. Nattarasu, "Electronic Circuits", 2nd edition, Sanguine Technical Publishers, 2012.
- 6. John M Yarbrough, "Digital Logic Application and Design", Cengage Learning India Pvt, Ltd, 2006.
- 7. Donald D Givone, "Digital Principles and Design", Tata McGraw Hill, 2003

Course Outcomes:

After completion of the course, the students shall be able to:

- 1. Analyze and explain different types of clipping, clamping and full wave rectifier circuits, and drive expressions for efficiency and ripple factors.
- 2. Explain different types of biasing circuits, single stage and multistage amplifier, analyze hybrid model and derive h Parameters.
- 3. Explain JFET & MOSFET construction and characteristics and drive important relation
- 4. Simplify boolean algebra equations by using K. map and Quine Mcclusky and MEV techniques.
- 5. Design combinational circuits like Code converters adders, comparators, decoders, mux etc.
- 6. Design Flip-Flop, sequential circuit Registers and Counters.

UEE352C		04 - 0	Credits (3 : 2 : 0)			
Hours/Week : 03	Network Analysis	C	IE Marks : 50			
Total Hours : 65		SE	EE Marks : 50			
	UNIT – I		(10L 6T Hours)			
Mesh and Node Analys	sis:					
Practical source transformation, network reduction using star delta transformation, Loop						
and node analysis with linearly dependent and independent source for DC and AC						
networks. Concept of super node and super mesh- Numerical Problems						
Network Topology:						
Graph of network, co	oncept of tree and co-tree, incidence ma	itrix, T	ie-set & cut-set			
schedules, Formulation	n of equilibrium equations in matrix form	n, solu	tion of resistive			
network, Principles of C			(101 8T Hours)			
Network Theorems-I			(102 01 110013)			
Superposition, Recipro	city, and Millman's theorems- Numerical Pro	blems				
Network Theorems-II:		Jorenno				
Thevenin's, Norton's ar	nd Maximum power transfer theorems- Num	nerical	Problems			
,	UNIT – III		(9L 8T Hours)			
Resonant Circuits:			· · · ·			
Series and parallel reso	onance, frequency-response of series and pa	arallel c	circuits, Q-factor,			
Bandwidth-Numerical I	Problems					
Transient behavior and	d initial conditions:					
Behavior of circuit elen	nent under switching condition and their rep	resenta	ation, evaluation			
of initial and final cond	itions in RL, RC, and RLC circuits for AC and D	C excit	ation- Numerical			
Problems	····-					
UNIT – IV (10L 6T Hours)						
Laplace Transformatio	ns and Applications:		of a way a wath a sig			
step, Ramp and Impuls	se functions and their Laplace transformatio	n, wav	reform synthesis			
notwork and their solu	tion. Numerical Problems	theore	eni, transformeu			
Two port network par	ameters:					
Short Circuit admittance parameters open circuit impedance parameters transmission						
parameters, hybrid parameters, relationship between parameters sets- Numerical						
Problems						
Reference Books:						
1. William H, Jack	E Kemmerly and Steve Durbin, "Engineering	ng Circ	uit Analysis", 8 th			
Edition, Tata M	cGraw Higher Education, 2013.					
2. M.E.VanValken	burg, "Network analysis", 3 rd Edition, PHI Lea	arning,	2014.			
3. Roy Chowdhar	y, "Network and Systems", 2 nd Edition, 1	New a	ge International			
Publications, 20	J1U.					
4. Charles K. Alexa	Inder, Matthew N. O. Sadiku "Fundamentals	OT FIEC	tric Circuits", 5th			
	CUTAW FIGHEF EUULALIUH, 2013.					

Syllabus for B.E. III - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Course Outcomes:

After completion of the course, the students will be able to:

- 1. List different types of electric circuits and active & passive elements and recall the statements of network theorems
- 2. Demonstrate source transformation, star-delta conversion, mesh & node analysis, network topology concepts and Laplace transforms in electric circuits
- 3. Solve eclectic circuits by applying network theorems and Laplace transforms
- 4. Analyze behavior of R, L & C elements in the electric circuits, their frequency response and determine resonance related parameters
- 5. Determine and establish the relation between the various parameters in electric circuits
- 6. Build expressions for mesh currents and node voltages by employing the network topology for solving large power system networks.

UEE353C		04 - Credits (4 : 0 : 0)
Hours/Week : 04	Electrical and Electronics Measurements	CIE Marks : 50
Total Hours : 52		SEE Marks : 50

UNIT – I	(13 Hours)	
Measurement of Resistance Inductance and Capacitance: (10L- Hours) Measurement of medium resistance: Wheatstone bridge - Sensitivity Galvanometer current, Limitations; Measurement of low resistance: Different measuring low resistance, Kelvin's Double bridge; AC Bridges: Gener equations of AC bridges; Measurement of Self Inductance – Types measurement of self-inductance, Maxwell's Inductance bridge, Maxwe Capacitance Bridge, Anderson's bridge; Measurement of Capacitance: Type measurement of capacitance, De Sauty's bridge, Schering Bridge; Errors in Sources and Detectors.	of WS bridge, ent Methods of ral equilibrium of bridges for ll's Inductance es of bridges for bridge circuits,	
UNIT – II	(13 Hours)	
Introduction; Types of Instruments; Permanent Magnet Moving Coll Instruments Torque equation; Moving Iron Instruments(MI) – Torque equation; Electro Type Instruments – Torque equation,; Thermocouple Instruments – Princip Construction, Advantages and Disadvantages. Measurement of Power and Related Parameters : (5L- Hours) Dynamometer Type Wattmeter, Low Power Factor Wattmeter; Induction Ty Energy meter – Construction, Theory; Dynamometer Type Single Phase Power – Construction and Operation: Weston Erequency meter	ment(PMMC) – odynamometer le of operation, pe Single Phase er Factor meter	
	(13 Hours)	
Extension of Instrument ranges: (10L- Hours) Introduction; Shunts and Multipliers for AC Ammeter and Voltmeter respectively; Instrument Transformers: Advantages of Instrument Transformers, Ratios of Instrument Transformers, ratio Correction Factor, Burden on Instrument Transformer; Current Transformer (CT) – Theory of CT, Errors in CT's, Design features if CT's; Potential Transformer (PT) – Differences between CT and PT. Theory of PT		
UNIT – IV	(13 Hours)	
Sensors and transducers: (10L- Hours) Definition and meaning of sensors and transducers, Difference betwee transducers, Classification (Types) of transducers: Mechanical/Electrical, Analog/Digital, Modulating/Self balancing, Examples and advantages transducers. Resistive transducers: Potentiometers, RTD, Thermistor, M (Principle, construction, working and application for each type). Capacitiv Absolute and differential type, applications. Inductive transducers: Synch variable differential transformer (LVDT) ((Principle, construction, working and Self-generating (Active) transducers: Piezoelectric, Pyroelectric, Thermoco construction, working and application for each type). Sensor/tra	n sensors and Active/Passive, of electrical agneto-resistor re transducers: ironous, Linear nd application). uple (Principle, ansducer-based	

instrumentation system: Generalized block diagram representation, Typical examples

related to electrical field.

Syllabus for B.E. III - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

-	
Re	ference Books:
1.	Golding & Widdies, Pitman, "Electrical Measurements and Measuring Instruments",
	5 th edition, D.R & Son's, New Delhi.
2.	John P Beately, "Principles of Measurement Systems", 3 rd edition, Pearson Education,
	2006.
3.	Ramon P. Areny, John G. Webster, "Sensors and Signal Conditioning", 2nd Edition,
	Wiley India Private Ltd.
4.	A. K. Sawhney, "Electrical & Electronic Measurements and Instrumentation", 19th
	edition, Dhanpat Rai & Son's, New Delhi, 2011.
5.	Cooper D and A. D. Helfrick, "Modern Electronic Instrumentation and Measurement
	Techniques", PHI.
6.	Ian R. Sinclair, "Sensors and Transducers", 3rd Edition, Newnes Publication.
Со	urse Outcomes:
	After completion of the course, the students shall be able to:
1	
1.	list & define various parameters and features of different types of electrical &
1.	list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers.
1. 2.	list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring
1. 2.	list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components.
1. 2. 3.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring
1. 2. 3.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducer.
1. 2. 3. 4.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic
1. 2. 3. 4.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers.
1. 2. 3. 4. 5.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. evaluate/calculate various parameters related to different types of electrical &
1. 2. 3. 4. 5.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. evaluate/calculate various parameters related to different types of electrical & electronic & electrical & electronic measuring instruments/devices, sensors & transducers.
1. 2. 3. 4. 5. 6.	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. evaluate/calculate various parameters related to different types of electrical & electrical & electronic a electrical & electronic measuring instruments/devices, sensors & transducers. discuss/choose/test different types of electrical & electronic measuring
 1. 2. 3. 4. 5. 6. 	 list & define various parameters and features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. explain the operation of different types of electrical & electronic measuring instruments/devices, sensors, transducer and their related components. experiment with or make use of different types of electrical & electronic measuring instruments/devices, sensors & transducers. compare and contrast the features of different types of electrical & electronic measuring instruments/devices, sensors & transducers. evaluate/calculate various parameters related to different types of electrical & electronic & electrical & electronic measuring instruments/devices, sensors & transducers. discuss/choose/test different types of electrical & electronic measuring instruments/devices, sensors & transducers.

UEE354C	Teek : 04 Transformers and Induction Machines urs : 52 04	04 - Credits (4 : 0 : 0)
Hours/Week : 04		CIE Marks : 50
Total Hours : 52		SEE Marks : 50

UNIT – I	(13 Hours)		
Single Phase Transformer: Transformer construction and types, Principle of operation,			
emf equation, concept of ideal transformer, no-load and on-load analysis of ideal and			
practical transformer. Phasor diagrams, Development of equivalent cir	rcuit diagram,		
Calculation of equivalent circuit parameters by OC and SC tests, Transform	er ratings and		
per unit(p.u.) scaling, Types of losses, efficiency, all day efficiency, volta	ge regulation,		
polarity test and Sumpner's test			
UNIT – II	(13 Hours)		
Three Phase Transformer: Types, three phase transformer connections:	star-star, star-		
delta, delta-star, delta-delta, open delta. Choice of connections: bank o	f single-phase		
transformers for three phase operations. Scott connection for three phase	se operations,		
Scott connection for three phases to two phase conversation. Labeling of	of three phase		
transformer terminals, phase shift between primary and secondary and y	vector groups,		
Harmonics in transformer, Suppression of harmonics by tertiary winding			
Parallel operation of Transformer: Need for parallel operation, conditions to be satisfied			
for parallel operation and load sharing, Parallel operation of three phase transformer			
Auto Transformer: Construction, working principle, saving of copper, equivalent circuit and			
applications			
UNIT – III	(13 Hours)		
Three Phase Induction Machine: Construction, types-squirrel cage and slip ring motors.			
Principle of operation, production of rotating magnetic field, slip, rotor induced emf and			

Principle of operation, production of rotating magnetic field, slip, rotor induced emf and it's frequency, power losses in an induction motor, equivalent circuit, torque equation, torque-slip characteristics-motoring generating and breaking modes, starting torque, maximum torque, effect of rotor resistances on torque slip -characteristics, power output, no load and blocked rotor test- evaluation of equivalent circuit parameters, circle diagram and obtain it's performance, double cage and deep bar motors, Cogging and crawling

UNIT – IV	(13 Hours)		
Starting and Speed Control of Three Phase Induction Motors: Need for starter, DOL, star			
delta, autotransformer and rotor resistance starters, Calculation of starting torque			
Voltage control, frequency and rotor resistance control			
Single Phase Induction Motors: Construction, double field revolving theory and principle			
of operation, equivalent circuit starting of single phase motors: Resistance split phase,			
capacitor start and capacitor run motors, shaded pole motors			
Reference Books:			

- I. J. Nagarath and D.P Kothari, "Electrical Machines" TMI Publications, 4th Edition 2012.
- 2. Ashaq Hussian, "Electrical Machines", Dhanapatrai and Co. 2nd Edition 2007.
- 3. P.S.Bhimra, "Electrical Machinery", Khanna Publishers, New Delhi, 7th Edition 2008-2011.
- 4. Smarjit Ghosh "Electrical Machines" Pearson, 3rd Edition 2011.
- 5. P.S.Bhimra, "Generalized Theory of Electrical Machine", Khanna Publishers, New

Syllabus for B.E. III - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Delhi, 5 th - Edition2008
6. Alexander Longsdorf, "Theory of alternating current", TMH-Publications 1999
Course Outcomes:
After completion of the course, the students shall be able to:
1. Explain the principle and construction of transformer and their phasor diagram.
2. Draw the equivalent circuit of transformer and calculate the parameters using OC and SC test.
3. Explain the necessary of autotransformer and parallel operation of transformer and their application.
4. Connect three phase transformer and compute different values.
5. State how torque is produced and torque varies with speed for induction motor and compute various electrical and mechanical qualities by no-load and blocked rotor test and circle diagram.
6. Explain starting methods and speed control of single phase and three phase IM and select proper motors for different applications.

UEE355L	Transformers and Induction Machines Laboratory	01 - Credits (0 : 0 : 1)
Hours/Week : 02		CIE Marks : 50
Total Hours : 26		SEE Marks : 50

	List of Experiments			
1.	Open circuit and short circuit test on single phase transformer and pre-			
	determination of efficiency, regulation for different loads at power factors.			
	Calculations of equivalent circuit parameters of a given transformer.			
2.	Sumpner's test.			
3.	Parallel operation of two single phase transformers (dissimilar ratings)			
4.	 Connections of three single phase transformers: star-star, star-delta, delta-delta and delta-star. 			
5.	Scott Connection. To convert 3-phase to 2-phase supply			
6.	6. Load test on three phase induction motor and performance evaluation,			
	(torque-speed, BHP-efficiency, slip BHP, etc).			
7.	7. No-load and blocked rotor test on three phase induction motor to calculate			
	parameters of equivalent circuit diagram and performance evaluation.			
8.	No-load and blocked rotor test on three phase induction motor to draw the			
	circle diagram and hencethe performance evaluation of given motor.			
9.	Speed control of three phase slip ring induction motor by rotor resistance.			
10.	Load test on single phase induction motor and performance evaluation			
	(torque-speed, BHP- efficiency,slip -BHP, etc)			
Course	e Outcomes:			
1	1. Test the given transformers and induction motors by various methods and			
	predetermine their performance such as losses, efficiency and regulation.			
2	2. Connect the given transformers in different configurations for different			
	operations, like autotransformer, parallel operation and 3-phase connections.			
3	3. Control the speed of 3-phase induction motors by stator voltage and rotor			
	resistance method.			

UEE356L Hours/Week : 02 Total Hours : 26		Electrical & Electronic Measurement	01 - Credits (0 : 0 : 1)		
			CIE Marks : 50		
		Laboratory	SEE Marks : 50		
List of Experiments					
1.	Measuremen	t of low resistance using Kelvin's double brid	ge.		
2.	2. Measurements of inductance using Maxwell's L-C bridge and determination of Q				
	factor.				
3. Measurements of capacitance using De-sauty's bridge and determination of dissipation factor.					
4.	Adjustment and calibration of I-Φ Energy meter.				
5.	 Measurement of power in a balanced 3-phase circuit using two wattmeter's for star and deltaconnected loads. 				
6.	6. Evaluation of transfer characteristics of Resistance Temperature Detector (RTD) using RTDmodule.				
7.	 Evaluation of transfer characteristics of Light Dependent Resistor (LDR) using LDR module. 				
 Evaluation of transfer characteristics of Semiconductor Temperature Sensor using LM35sensor module/unit. 					
9. Evaluation of transfer characteristics of Linear Variable Differentiation		riable Differential			
	Transformer	using LVDTmodule.			
Course (Outcomes:				
1.	Student shall	be able to use measuring devices and senso	rs.		
2.	Student shall	be able to analyze electrical circuits from	the reading and results		
	obtained fron	n various circuits.			
3.	Student shall	be able to interpret the analysis results obtai	ned and drive inference		
	for the given	circuits/systems.			

UEE357L Hours/Week : 02	Network Analysis Laboratory	01 - Credits (0 : 0 : 1) CIE Marks : 50		
Total Hours : 26		SEE Marks : 50		
List of Experiments				
1. Determination of equivalent resistance in complex electric circuits with star and				

		delta conversions		
	2.	Determination of Average value, rms value, Form factor, Peak factor of sinusoidal		
		wave and square wave		
	3.	3. Verification of mesh analysis (With all possible combinations of Voltage and		
		Current sources including a supermesh, AC and DC)		
	4.	Verification of node analysis (With all possible combinations of Voltage and		
		Current sources including a supernode, AC and DC)		
	5.	Verification of super position theorem (AC and DC, including dependent sources)		
	6.	Verification of reciprocity theorem (AC and DC)		
	7.	Verification of maximum power transfer theorem with both resistive and		
		impedance loads (AC and DC)		
	8.	Verification of Thevenin's and Norton's theorem (AC and DC, including		
		dependent sources)		
	9.	Verification of Milliman's theorem (AC and DC, including dependent sources)		
	10.	Determination of frequency response for series resonance and parallel		
		resonance circuits		
	11.	Determination of transient response of current in RL and RC circuits with step		
		voltage input		
Refer	ence	e Books:		
1.	W	illiam H, Jack E Kemmerly and Steve Durbin, "Engineering Circuit Analysis", 8th		
	Ed	ition, Tata McGraw Higher Education, 2013.		
2.	Μ	.E.VanValkenburg, "Network analysis", 3 rd Edition, PHI Learning, 2014.		
3.	Ro	y Chowdhary, "Network and Systems", 2 nd Edition, New age International		
	Pu	blications, 2010.		
4.	Ch	arles K. Alexander, Matthew N. O. Sadiku "Fundamentals of Electric Circuits", 5 th		
	Ed	ition, Tata McGraw Higher Education, 2013.		
Cours	e Oı	utcomes:		
1.	St	udent shall be able to identify and use the voltage & current sources and other		
	ра	ssive elements of electrical networks		
2	C 1	where where the second of the start density of the second s		

- 2. Student shall be able to verify the electric network theorems and analyze the behavior of circuit elements
- 3. Student shall be able to interpret the analytical calculations with experiments results of the circuit analysis

Syllabus for **B.E. IV - Semester** for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

UMA491C		03 - C	redits (3: 0: 0)			
Hours/Week : 03	Statistics and Probability Distribution	CIE Marks : 50				
Total Hours : 40	otal Hours : 40 SE					
UNIT – I (10 Hours)						
Statistics: Curve fitting	by the method of least squares:					
$y = a + bx, \ y = ab^x, \ y$	$=a+bx+cx^2$ Correlation, expression for the	e rank co	rrelation			
coefficient and regress	ion.					
	UNIT – II		(10 Hours)			
Probability: Probability: addition rule, conditional probability, multiplication rule, Baye's rule. Discrete and continuous random variables-Probability density function, Cumulative distribution function, Problems on expectation and variance						
	UNIT – III		(10 Hours)			
Probability Distributio Binomial distributions probability, Joint proba	ns: Poisson distributions and Normal distribu ability distributions.	tions. Co	oncept of joint			
	UNIT – IV		(10 Hours)			
Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regular stochastic Matrices, Markov chains, higher transition probabilities, stationary distribution of regular Markov chains and absorbing states.						
Reference Books:						
1. Seymour Lipschutz, "Theory and problems of probability", Schaum Outline Series, 2020.						
2. Steven Chapra, Raymond Canale, "Numerical Methods for Engineers", 6 th Edition, Tata McGraw Hill Publishers, 2018.						
3. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers. New Delhi.						
4. H. K. Das, "Advanced Engineering Mathematics", S. Chand & company Ltd. Ram						
Nagar, New Delhi.						
5. E Kreyszig, "Ad	vanced Engineering Mathematics", Wiley & S	50ns, 10 ^t	^h Edition, 2011.			
Course Outcomes:						
After completion of this course, students are able						
1. To apply the least square sense method to construct the specific relation for the						
given group of	data.					
2. To understand	concept of probability to find the physical	significa	nce of various			
distribution nh	enomena	Significa				
4. To understand	the concepts of probability distributions.					
5. To apply the co	ncept of Markov Chain for commercial and	industry	purpose.			

	UFF451C		04 - Credits (3: 2: 0)				
Hours/Week : 05		Signals and Systems	CIE Marks · 50				
			SEE Marks : 50				
			522				
		UNIT – I					
Intro	duction:						
Defin	nitions of signals a	nd systems, classification of signals, basic	operatio	ons on signals.			
Elementary signals and properties of systems							
Time-domain Representation for LTL Systems:							
Conv	olution. impulse	e response representation, properties	impu	lse response			
repre	esentation. blocks	diagram representations.	1				
	,	UNIT – III					
Fouri	ier Analysis of per	iodic and Aperiodic Signals:					
Intro	duction, Propertie	s of continuous-time Fourier series (excludin	g derivat	tion of defining			
equa	tions for CTFS), Fo	urier representation of discrete-time period	ic signals	s, properties of			
discr	ete-time Fourier s	eries (DTFS).	-				
		UNIT – IV					
Z-Tra	insforms:						
Intro	duction, Z transfor	m, properties of ROC, properties of the Z - t	ransform	n, inversion of			
Z -tra	ansform, Long divis	ion method, Partial fraction expansion meth	nod, Trar	nsfer function,			
causa	ality and stability.						
Refe	rence Books:						
1.	Simon Haykin an	d BaryVam Veen, "Signals and Systems," Jo	hn Wiely	y and Sons, 2nd			
	Edition2014.						
2.	H P HSU, "Signals and Systems," Schaums Outline, TMH, 2nd Edition2011.						
3.	Michel J Roberts	s, "Signals and Systems-Analysis of signals t	through	linear systems"			
	TMH, 2003.						
4.	Alan V Oppenhe	eim, Alan S.Will sky and S.hamid Nawab,	"Signals	and Systems,"			
	Pearson Education	on, Indian Reprint, 2 nd Edition2013.					
Cour	se Outcomes:						
A	fter completion of	the course,					
1.	 Students shall be able to classify different types of signals and systems. 						
2.	element	ary signals and					
	systems.						
3.	Students shall be	e able to derive the properties of signals an	d systen	ns, convolution,			
	Fourier series, Fo	ourier transform and Z-transform.					
4.	Students shall be able to solve convolution sum and integral, CTFS and DTFS.						
5.	Students shall be	e able to decide the stability of system in the	e Z doma	ain for different			
	types of systems.						
6.	Students shall be	e able to construct the continuous time ar	nd discre	te time system			
	using direct form	-I and canonical form.					

UEE452C		04 - Credits (4 : 0 : 0)					
Hours/Week : 04	Power Electronics	CIE Marks : 50					
Total Hours : 52		SEE Marks : 50					
	UNIT – I	(13 Hours)					
Introduction: Introduction to power electronics, block diagram of power electronic converter system, applications of power electronics. Types of power electronic circuits and their peripheral effects.							
characteristics, switching characteristics, switching limits, di/dt and dv/dt protection, cooling, heat sinks and snubber circuits. Thyristors: Introduction, static characteristics, two transistor model. Switching characteristics, di/dt and dv/dt protection.							
	UNIT – II	(13 Hours)					
Controlled Rectifiers: Introduction, Classification of rectifiers, principle of phase-controlled converter operation. Single- phase half wave, semi-converters and full converters and problems. Three-phase half wave, semi converters and full converters with R, R-L and RLE load. Performance evaluation of Rectifier.							
	UNIT – III	(13 Hours)					
commutation, impulse commutation, resonant pulse commutation, refere commutation, series commutation, commutation. DC – DC Converter: Introduction. Principle Operation of dc-dc converter, Control Strategies: constant frequency, Variable Frequency, Four quadrant operation of dc-dc converter. Detailed analysis of Class-A chopper with numericals, principle operations of Class-B, Class- C, Class-D and Class-E chopper							
	UNIT – IV	(13 Hours)					
 Inverters: Introduction. Types of inverters, performance parameters, principle of operation of half bridge and full bridge inverters with R and R-L load. Three phase inverter configurations to operate with 120- and 180-degree modes. Voltage control of single-phase inverters – single pulse width modulation, multiple pulse width modulation and sinusoidal pulse width modulation. AC Voltage Controllers: Introduction. Principle of ON-OFF control and phase control. Single-phase half wave and fullwave AC voltage controllers with resistive and inductive loads. Reference Books: M.H.Rashid "Power Electronics", 3rd - Edition, P.H.I./Pearson, New Delhi, 2002. Mohan, Undeland, Robbins" Power Electronics" Wiley Edition 2003 P.S.Bimbra, "Power Electronics", IV- edition, Khanna Publishers, 2009. G.K. Dubey, S.R. Dorodla, A. Joshi and R.M.K. Sinha, "Thyristorised Power Controllers", NewAge International Publishers, 2005. M.D. Singh and Khanchandani K.B., "Power Electronics", 2nd - Edition Khanna Publisher, 2007. 							

Syllabus for B.E. IV - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Course Outcomes:

After completion of the course,

- 1. Students will able to recall and understand the principle operation of various power converters such AC-DC, DC-DC, DC-AC and AC-AC.
- Students will able to classify types of power electronics circuits that effect power quality.
- 3. Students will be able to analyze the controlled rectifier, DC-DC converter, PWM inverters and AC controllers for R and RL loads.
- 4. Students able to design the circuit elements of chopper employed for the controlling of DC motor and circuit elements of commutation circuits
- 5. Students will be to illustrate and analyze the various control strategies in controlling of chopper and voltage source inverter.
- 6. Students will be able to design the heats sinks, circuit elements of snubber/protection circuits.

UEE453C		04 - Credits (4 : 0 : 0)					
Hours/Week : 04	Operational Amplifiers and Linear IC's	CIE Marks : 50					
Total Hours : 52		SEE Marks : 50					
	UNIT – I	(13 Hours)					
Op-Amps:Block diagram and characteristics of 741 Op-amp, Op-amp as an inverting and non- inverting amplifier, voltage follower, adder, subtractor, integrator and differentiator.Op-Amps as AC Amplifier:Capacitor coupled voltage follower, high Z _{in} capacitor coupled voltage follower, capacitor coupled non- inverting amplifier, high Zin capacitor coupled non - inverting amplifier, capacitor coupled inverting amplifier, setting the upper cut - off frequency, capacitor							
coupled difference am		(12 Hours)					
		(13 Hours)					
Op-amp circuit stability, frequency and phase response, frequency compensating methods, manufacture's recommended compensation, op-amp circuit band width, slew rate effects, stray capacitance effects, load capacitance effects, Z _{in} mod compensation and circuit stability precautions. Signal Processing circuits: Precision half wave & full wave rectifiers, limiting circuits, clamping circuits, peak							
		(13 Hours)					
On-amp Nonlinear circ	uits:	(13 110013)					
Op-amp Nominear Circuits: Op-amps in switching circuits, zero crossing detectors, inverting Schmitt trigger circuit, non- inverting Schmitt circuit. Astable multivibrator and mono-stable multivibrator using 555 timer. Signal Generator: Triangular/Rectangular wave generator, waveform generator design, phase shift oscillator,							
oscillator amplitude sta	abilization, Wein bridge oscillator, signal gene	erators output controls.					
	UNIT – IV	(13 Hours)					
 Active Filters: First and second order high pass and low pass filters, band stop and band pass filters. D.C Voltage Regulators: Voltage regulators basics, voltage follower regulator, adjustable output regulator, LM217 and LM237 integrated circuit voltage regulators 							
Reference Books:							
 David A. Bell, "Operational Amplifier and Linear ICS", 3rd edition, Oxford, 2012. Ramakanth A. Gayakwad, "Operational Amplifier and Linear ICS", 4th edition, PHI, 2016. R.F. Coughlin & F.F. Driscoll, "Operational Amplifier and Linear ICS", 6th edition, PHI, 2015. Bruce Carter and Ron Mancini, "OP AMPS for everyone", 4th edition, Elsevier, 2013 							

Syllabus for B.E. IV - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Course Outcomes:

After completion of the course,

- 1. Student should be able to explain the characteristics of Op-Amp.
- 2. Student should be distinguishing the operational function of the amplifier.
- 3. Student should be able to explain about the AC amplifier.
- 4. Student should be able to define the frequency response of op-amps.
- 5. Student should be able to design the application of op-amp.
- 6. Student should be able to evaluate the various types of the filters.

		04 Cr	$ditc (4 \cdot 0 \cdot 0)$				
Hours/Wook : 04	DC Machines and Synchronous Machines		Marks : 50				
Total Hours : 52	De Machines and Synchronous Machines	CIE Marks : 50					
Total Hours . 52		JLL					
	UNIT – I		(13 Hours)				
Single Phase Transform	her:		(15 110415)				
Constructional details a	nd EME equation. Phasor diagrams. Calculat	ion of ea	uivalent circuit				
parameters by OC and	SC tests. Transformer ratings and per unit	(p.u.) sc	aling. Losses &				
efficiency. all day efficie	ency, voltage regulation, polarity test and Su	impner's	test.				
Auto Transformer: Con	nstruction, working principle, saving of con	per. eau	uvalent circuit				
and applications.							
	UNIT – II		(13 Hours)				
DC Generator:							
Construction of DC mac	hines, types of windings, emf equation, type	s of excit	ations, no load				
and load characteristi	cs, armature reaction, calculation of der	magnetiz	ing and cross				
magnetizing AT/pole,	concept of compensating winding, com	mutatior	n, inter poles,				
application of DC gener	rators.						
DC Motors:							
Principle of Operation	& concept of back EMF, torque equation	on, chara	acteristics and				
application of D.C. mot	ors.						
	UNIT – III		(13 Hours)				
Construction & types of motors, Principle of operation, production of rotating magnetic field, slip, rotor induced emf and it's frequency, power losses in an induction motor, equivalent circuit, torque equation, torque-slip characteristics-motoring generating and braking modes, starting torque, maximum torque, effect of rotor resistances on torque slip - characteristics, power output, no load and blocked rotor test- evaluation of equivalent circuit parameters, circle diagram and obtain it's performance, double cage and deep bar							
			(13 Hours)				
Synchronous Machines			(10110013)				
Construction and types of synchronous Machines, types of field excitation, double layer distributed chorded winding example, emf equation for generator, effect of distribution and chorded coils, effects of harmonics on emf generated, phasor diagram of a Synchronous generator with cylindrical rotor, calculation of voltage regulation by EMF, MMF, and ZPF methods. Salient pole synchronous machines: Phasor diagram and power developed.							
Reference Books:							
1. I J Nagarath and	d DP Kothari, "Electrical machines", 4 ^m - Edil	tion, TMI	H, New Delhi				
2. B.L.Theraja "E	iectrical technology" vol –II, S. Chand public	ations, N	lew Delhi, 2018				
3. Ashtaq Hussain 2017	i, "Electrical Machines", Dhanpat Rai & Co. P	ublicatio	ons, 3 ¹⁴ Edition,				
4. P.S. Bhimra, "E	lectrical machinery", Khanna publishers. 7 th	Edition 2	018				

Syllabus for B.E. IV - Semester for academic year 2021 – 2022

(For students admitted to I year in 2020-21)

Course Outcomes:

After completion of the course, the students will be able to:

- 1. Explain the principle operation construction and classification of both AC and DC machines.
- 2. Explain the performance operation of both AC and DC machines.
- 3. Identify the machines for different operations/applications by using operating characteristics of machines.
- 4. Calculate different parameters like losses and efficiency by conducting different tests on different machines and gives the conclusion.
- 5. Solve the numerical and compare the results.
- 6. Select the machines for different field applications and identify the significance of parallel operation.
| UEE456L | | 01 - Credits (0 : 0 : 1) |
|------------------|------------------------------|--------------------------|
| Hours/Week : 02 | Power Electronics Laboratory | CIE Marks : 50 |
| Total Hours : 26 | | SEE Marks : 50 |

	List of Experiments
1.	Static characteristic of SCR.
2.	Static and Switching characteristic of IGBT and MOSFET.
3.	Static characteristic of TRIAC.
4.	Study of SCR firing circuit (R, RC, UJT, Digital).
5.	Single Phase half wave-controlled rectifier with R and RL load.
6.	Single phase half-controlled bridge rectifier with R and RL load.
7.	Single phase fully controlled bridge rectifier with R and RL load.
8.	Speed control of a separately excited D.C. motor using an IGBT an MOSFET
	chopper.
9.	Study of SCR commutation circuit.
10). Half wave and Full wave bridge Inverter for R and RL load.
Course	Outcomes:
1.	Students shall be able to explain the basic operation of various power
	semiconductor devices and passive components.
2.	Students shall be able to apply power electronic circuits for different loads.
3.	Students shall be able to demonstrate the ability to apply what they have learned
	theoretically in the field of Power electronics.

UEE457L	DC Machines and Synchronous Machines	01 - Credits (0 : 0 : 1)
Hours/Week : 02		CIE Marks : 50
Total Hours : 26	Laboratory	SEE Marks : 50

	List of Experiments
1.	OCC characteristics of D.C. Shunt generator.
2.	Load characteristics of a D.C. generator.
3.	Load test on a DC motor- determination of speed-torque and BHP-efficiency
л	Speed control of DC motor by armature voltage control and flux control
4. 5	Swinburne's test
5. 6.	Ward Leonard method of speed control of D.C. motor.
7.	Hopkinson's Test.
8.	Fields test on series motors.
9.	Voltage regulation of alternator by EMF, MMF, method.
10.	Voltage regulation of alternator by ZPF method.
11.	Synchronization of Alternator with infinite bus.
12.	V and Inverted V curves of a synchronous motor.
Course C	Dutcomes:
1.	Students shall be able to design Op-Amp circuits and analyze simple
	applications of abovecircuits.
2.	Students shall be able to design Filter circuits and understand the
	principles of timers andoscillators.
3.	Students shall be able to design and analyze rectifier circuits.

UEE458L		01 - Credits (0 : 0 : 1)								
Hours/Week : 02	Linear IC's Laboratory	CIE Marks : 50								
Total Hours : 26		SEE Marks : 50								
	List of Experiments									
1. Study of Op-A	mp as									
a. I	nverting and non-inverting amplifier									
b. I	ntegrator and differentiator.									
2. Study of Op-A	mp as									
c. \	/oltage follower									
d. <i>A</i>	Adder and substractor									
3. Study of Op-A	mp as zero crossing detector									
4. Study of Op-A	mp as Schmitt trigger									
5. Study of Op-A	mp as triangular and rectangular wave gene	rator.								
Design and te	sting of Op-Amp based RC phase shift oscilla	itor.								
Design and te	sting of Op-Amp based RC Wein bridge oscil	lator.								
8. Study of rect	ifiers using Op-Amp.									
9. Design and te	esting of filters of the first and second order	using Op-Amp.								
10. Study of Asta	able multivibrator using Op-Amp.									
11. Study of Asta	able multivibrator using 555 timer.									
Course Outcomes:										
1. Students sh	all be able to design Op-Amp circuits and ana	lyze simple applications								
of above cir	rcuits.									
2. Students sh	all be able to design Filter circuits and unde	rstand the principles of								
timers and	oscillators.									

3. Students shall be able to design and analyze rectifier circuits.

Syllabus for B.E. V - Semester

for academic year 2022 – 2023

UEE551C		03 - Cro	edits (2 : 2 : 0)
Hours/Week : 04	Field Theory	CIE	Marks : 50
Total Hours : 52		SEE	Marks : 50
	UNIT – I		(7L-6THours)
Review of Vector Analys Introduction to Scalars a Coulomb's Law and Elec Experimental law of C charge distribution, field Electric Flux Density, Ga Electric Flux Density, C vector operator V and th Energy and Potential: E	sis: and vectors ctric Field Intensity: oulomb, electric field intensity, field due d of a line charge, field of a sheet charge. Duss' Law and Divergence: Gauss' Law, Divergence. Maxwell's first ec ne divergence theorem. UNIT – II nergy expended in moving a point charge in	to conti quation (an electr	nuous volume (Electrostatics), (6L-7THours) ic filed, the line
integral, definition of charge and system of ch Conductors, Dielectrics current, metallic conduct	potential difference and potential. The ponarges, potential gradient, the dipole. and Capacitance: Current and current start corrent start correct start start start correct start	otential f density, onditions,	ield of a point Continuity of capacitance.
	UNIT – III		(7L-6THours)
magnetic flux and flux d Magnetic Forces: Force on a moving ch current elements, Force	ensity. arge and differential current element, For and torque on a closed circuit.	ce betwe	een differential
	UNIT – IV		(6L-7THours)
Materials and Inductant The nature of magnetic conditions, Magnetic cir Time Varying Fields and Faraday's law, displacem Reference Books:	ce: c materials, Magnetization and permeabili cuit, Potential energy and forces on magneti Maxwell's Equations: nent current, Maxwell's equation in point and	ity, Magr c materia d Integral	netic boundary als. I form.
 William H.Hayt Jr. a McGraw Hill, 2012. John Karuss and D McGraw-Hill, 1999. Edward C. Jordan and II- edition, Prentice H 	nd John A Buck, "Engineering Electromagn Daniel A Fleisch, "Electromagnetics with d Keith G Balmain, "Electromagnetic Waves a Iall of India / Pearson Education, 1968. Repri	etics", 1 Applica and Radia nt 2002.	7 th edition, Tata tions" V-edition ating Systems ,"
4. Dr. D. Ganesh Rao, "I	Field Theory" Sanguine Technical Publishers,	1 Editio	n, 2014.
Course Outcomes: After completion of the 1. Identify differentia applications	course the students will be able to, I coordinate elements for the various elec	ctric and	magnetic field

- 2. Estimate the flux density, field intensity of electric and magnetic fields for various charges
- 3. Analyze the time varying and static electric and magnetic fields for various charges
- 4. Select the suitable time varying Maxwell's equation for real-time application of electromagnetism.

sı.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE551C.1	3	1	1	1	3	1		1		1		1	1	3	2
2	UEE551C.2	3	2	1	1				1		1		1	1	1	2
3	UEE551C.3	3	2	2	2	1		1	1		1		1	2	3	1
4	UEE551C.4	3	3	3	2	1			1	1	1	1	2	2	1	1

UEE552C Hours/Week : 04 Total Hours : 52	Digital Signal Processing	03 - Credits (2 : 2 : 0) CIE Marks : 50 SEE Marks : 50								
	LINIT – I	(71-6THours)								
Discrete Fourier Transform: Introduction, Definition, and derivation of DFT and IDFT, Properties-linearity, shift, Symmetry etc., circular convolution, periodic convolution, use of tabular arrays, circular arrays, Stock Ham's methods, Linear convolution-two finite duration sequences, One finite and one infinite duration –overlap add method-Problems										
	UNIT – II	(7L-6THours)								
Fast Fourier Transform Algorithms: Introduction, decimation in time algorithm (DIT-FFT, DIT-IFFT), First decomposition, Continuation of decomposition, number of computations, number of multiplications, Computational efficiency-Problems Design of FIR Digital filters: Introduction, Windowing, rectangular, Hamming window-Problems										
	UNIT – III	(7L-6THours)								
Design of IIR Digital filters: Introduction, all pole analog filters- Butterworth and Chebyshev, Design of analog filters, Bilinear Transformation, Design of digital Butterworth and Chebyshev filters, Frequency transformations-Problems										
	UNIT – IV	(7L-6THours)								
Realization of Digital Systems: Introduction, block diagrams and SFG's, Realization of IIR systems- direct form, cascade form, Parallel form, Realization of FIR systems- direct form, cascade form, Linear phase realizations-Problems DSP Processors TMS320:										
Reference Books										
 Reference Books: Digital Signal Processing Principle, algorithms and applications 4th edition by Proakis, Pearson Education 2012 Digital Signal Processing by Sanjith K. Mithra Edition, 2013 Digital Signal Processing by Oppenheim, Pearson Education / PHI, 2015 Digital Signal Processing by Salivatanam, A Vallavaraj, Gnanapriya, TMH 2011 Digital Signal Processing by Ifeachor Emmauel, Pearson Education, 2nd edition 2010 										
Course Outcomes:										
 Recall DFT, IDFT, and basic properties of DSP Derive DFT properties, FFT algorithms, filter equations, and convolution output and classify filters Assess the output of system by linear & circular convolution, Stockhams method, and FFT algorithms Implement/realize the discrete LTI system in direct form I & II, cascade and parallel forms and Design a filter for the given specifications 										

	Course Outcomes - Programme Outcomes Mapping Table															
SI.	Course Outcomes	P01	P02	PO3	P04	50d	90d	P07	PO8	60d	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE552C.1	3	1	1		3	1		1		1		2	1	3	1
2	UEE552C.2	3	2	1					1		1		2	1	3	1
3	UEE552C.3	2	2		2	1		1	1		1		1	1	3	1
4	UEE552C.4	2	3	3	2	1			1	1	1	1	2	1	3	1

UEE553C		03 - Cr	edits (2 : 2 : 0)								
Hours/Week : 04	Control Systems	CIE	Marks : 50								
Total Hours : 52		SEE	Marks : 50								
	UNIT – I		(7L-8T Hours)								
Introduction and Transf	fer Function of Systems: Classification of cor	ntrol syst	ems, open loop								
and closed loop system	ns, effects of feedback, mathematical mod	els of ph	iysical systems;								
definition of transfer fu	inction, mechanical systems, rotational syst	ems, ele	ctrical systems,								
analogous systems.											
Block Diagrams and Sig	mal Flow Graphs: Block diagrams (BD) redu	uction of	BD signal flow								
graphs (SFG), drawing b	plock diagram and SEG of simple networks	. Mason'	s gain formula.								
converting BD into SFG.		,	- 8,								
	UNIT – III		(7L-6T Hours)								
Time Response of Feed	Back Control Systems: Standard test signal	ls, unit st	ep response of								
first and second orde	er systems, time response specifications	s, and ⁻	Fime response								
specifications of second	order systems, steady state errors and error	constan	ts.								
Stability Analysis: Conc	epts of stability, necessary conditions for st	tability, F	Routh's stability								
criterion.											
Root–Locus Analysis: Ro	oot locus concepts, construction of root loci.										
Introduction to State Va	ariable Analysis: Concepts of state, state va	riables al	nd state model,								
function and transfer fu	continuous time systems, conversion of s	state mo	der to transfer								
			(61-6T Hours)								
Frequency Domain An	alvsis: Introduction, frequency domain sp	ecificatio	ns. correlation								
between time and free	quency response, method to draw bode p	lot, phas	e margin, gain								
margin.		· •									
Nyquist stability criteric	on.		Nyquist stability criterion.								
Reference Books:											
1. Norman S. Nise "Co											
	ntrol System Engineering", McGraw Hill, 201	.0.									
2. Benjamin C. Kuo, "A	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI,	.0. 2010.									
 Benjamin C. Kuo, "A Richard C. Dorf Rc 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems"	.0. 2010. 7, 8 th Ec	lition, Addison-								
 Benjamin C. Kuo, "A Richard C. Dorf Rc Wesley,1999 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems"	.0. 2010. ', 8 th Ec	lition, Addison-								
 Benjamin C. Kuo, "A Richard C. Dorf Rc Wesley,1999 Katsuhiko Ogata, N 2001 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o	.0. 2010. 7, 8 th Ec of India I	lition, Addison- Private Limited,								
 Benjamin C. Kuo, "A Richard C. Dorf Rc Wesley,1999 Katsuhiko Ogata, N 2001 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, Obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o	.0. 2010. 7, 8 th Ec	lition, Addison- Private Limited,								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o	.0. 2010. ', 8 th Ec of India I	lition, Addison- Private Limited,								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control of 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o course the students will be able to:	.0. 2010. 7, 8 th Ec of India I	lition, Addison- Private Limited,								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o course the students will be able to: systems based on a number of ways and se	.0. 2010. 7, 8 th Ec of India I	lition, Addison- Private Limited, n for particular								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. Develop mather 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o course the students will be able to: systems based on a number of ways and se matical modeling of LTI control systems v	.0. 2010. 7, 8 th Ec of India I elect ther	lition, Addison- Private Limited, n for particular								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. Develop mather formation, transit 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice–Hall o course the students will be able to: systems based on a number of ways and se matical modeling of LTI control systems v fer function, and state space analysis.	0. 2010. 7, 8 th Ec of India I elect ther	lition, Addison- Private Limited, n for particular ential equation								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. Develop mather formation, transis Employ time data 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice—Hall o course the students will be able to: systems based on a number of ways and se matical modeling of LTI control systems v fer function, and state space analysis. omain analysis to predict and diagnose	.0. 2010. 7, 8 th Ec of India I elect ther ria differe transien	lition, Addison- Private Limited, n for particular ential equation t performance								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. Develop mather formation, transis Employ time de parameters of LT 	Automatic Control System", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, Obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice—Hall o course the students will be able to: systems based on a number of ways and se matical modeling of LTI control systems v fer function, and state space analysis. omain analysis to predict and diagnose "I control systems for standard input functior	0. 2010. 7, 8 th Ec of India I elect ther transien transien	lition, Addison- Private Limited, n for particular ential equation t performance								
 Benjamin C. Kuo, "A Richard C. Dorf Ro Wesley,1999 Katsuhiko Ogata, N 2001 Course Outcomes: After completion of the Classify control s applications. Develop mather formation, transs Employ time day parameters of LT Formulate differ 	ontrol System Engineering", McGraw Hill, 201 Automatic Control System", 7th Edition, PHI, obert H. Bishop "Modern Control Systems" Modern Control Engineering, Prentice—Hall of course the students will be able to: systems based on a number of ways and se matical modeling of LTI control systems v fer function, and state space analysis. omain analysis to predict and diagnose "I control systems for standard input functior ent types of analysis in frequency domain t	0. 2010. 7, 8 th Ec of India I elect ther transien transien	lition, Addison- Private Limited, n for particular ential equation t performance the stability of								

	Course Outcomes - Programme Outcomes Mapping Table															
SI.	Course Outcomes	10d	20d	٤Od	P04	50d	90d	20d	P08	60d	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE553C.1	3	3	2	2								1		2	
2	UEE553C.2	3	3	3	2								1		3	
3	UEE553C.3	3	3	2	2						1		1		3	
4	UEE553C.4	3	3	2	2						1		1		3	

(For students admitted to I y	year in 2020-21)
-------------------------------	------------------

UEE554C		03 - Credits (3 : 0 : 0)
Hours/Week : 03	Generation Transmission and Distribution	CIE Marks : 50
Total Hours : 40		SEE Marks : 50

UNIT – I

(10 Hours)

Electrical Power Generation:

Hydro Power Generation: Site selection, Line diagram representation, Classification, Merits and Demerits. Thermal Power Generation: Site selection, Line diagram representation, Classification, Merits and Demerits. Nuclear Power Generation: Site selection, Line diagram representation, Classification, Merits and Demerits.

Basic Aspects of Power Generation:

Introduction, Load curve and load duration curve. Terms commonly used in system operation: Load factor, Diversity factor, Demand factor, plant capacity factor, plant utilization factor, Installed capacity, reserve capacity, Cold reserve, hot reserve, Spinning reserve, firm power. Effect of diversity factor on cost of generation. Interconnection of power stations, transfer of power. Economic Loading of interconnected stations.

UNIT – II	(10 Hours)
AC Transmission Systems:	
Typical AC transmission system, Advantages of high voltage transmission.	Comparison of

conductor material in overhead lines: 3 phase 3 wire systems, 3 phase 4 wire system. Components of overhead transmission line: Conductors, Line supports, Insulators – Types, Potential distribution over suspension insulator string, String efficiency, Methods of improving string efficiency. Corona – Factors affecting corona, Imp terms, Methods of reducing corona. Sag in overhead lines- Calculation of sag for equal and unequal supports, Effect of wind and ice loading on sag.

Electrical Parameters of Overhead Transmission Lines:

Constants of Transmission line. Inductance of single phase two wire line, Capacitance of single phase two wire line.

UNIT – III

UNIT – IV

(10 Hours)

(10 Hours)

Performance of Transmission Lines:

Classification of overhead Transmission line. Short Transmission line, Medium Transmission line – End condenser method, Nominal T method, Nominal π method, Long Transmission line. Generalized circuit constants (ABCD) of a transmission line.

Underground Cables:

Construction of underground cables, Insulating materials for underground cables, Laying of underground cables. Insulation resistance of single core cable, Capacitance of single core cable, Dielectric stress in a single core cable.

Distribution Systems:

Classification of distribution systems. Overhead Vs Underground distribution system. Connection schemes of distribution system. Requirements of a distribution system.

DC Distribution:

Types of DC distributors, DC distributor fed at one end- Concentrated loading, Uniform loading. DC distributor fed at both ends - Concentrated loading.

AC Distribution:

AC distribution calculation, Methods of solving AC distribution issues.

(For students admitted to I year in 2020-21)

Reference Books:

- 1. Soni, Gupta and Bhatnagar, "Power System Engineering", 5th edition, Dhanapat Rai and Co.(P) Ltd. Publishers, New Delhi, 2016.
- 2. Mehta V K and Rohit Mehta, "Principals of Power Systems", 4th edition, S Chand and Company Ltd, Publishers, New Delhi, 2015.
- 3. Gupta J B, "Transmission and Distribution of Electrical power", 9th edition, Sanjeev jumar Kataria Publishers, New Delhi, 2012.
- 4. Wadhwa C L, "Generation, Distribution and Utilization of Electrical Power", 3rd edition, New age International (p) Ltd., New Delhi, 2012.

Course Outcomes:

After completion of the course the students will be able to,

- 1. List and define various parameters and features of Electrical power generation, transmission and distribution.
- 2. **Explain** different mechanical and electrical parameters related to Electrical power generation, transmission and distribution.
- 3. **Compare and contrast** the features of Electrical power generation, transmission and distribution.
- 4. **Evaluate/calculate** various parameters related to Electrical power generation, transmission and distribution.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE554C.1	3							1		1		1	2	1	2
2	UEE554C.2	3	1						1		1		1		2	
3	UEE554C.3	3	3	2	2	1			1		1		1		3	
4	UEE554C.4	3	3	3	3	1			1	1	1		2	3	3	3

UEE557E		03 -	Credits (3 : 0 : 0)
Hours/Week : 03	Electrical Machine Design	C	CIE Marks : 50
Total Hours : 40		S	EE Marks : 50
	UNIT – I		(10 Hours)
Principles of Electrical	Machine Design: Introduction to design	of ele	ctrical machines,
limitations. Different ty	pes of materials and insulators used in elect	rical m	achines.
Design of DC Machines	: Output equation, choice of specific loading	gs and	number of poles,
design of main dimension	ons, armature slot dimensions and estimatio	n of ar	npere turns.
	UNIT – II		(10 Hours)
and three phase tran determination of main of of turns and cross sect cooling tubes.	s (Single phase and three phase). Output ex sformer, choice of specific loadings, exp dimensions of the core, types of windings an sional area of Primary and secondary coils a	d estir and De	n tor volts/turn, nation of number esign of tank and
	UNIT – III		(10 Hours)
Design of Induction Mo	otors: Output equation, choice of specific loa	idings,	main dimensions
of three phase induction	on motor, stator winding design, choice of	f lengt	h of the air gap,
estimation of number o	f slots for the squirrel cage rotor, end ring cu	irrent.	
	UNIT – IV		(10 Hours)
circuit ratio, design of stator of salient and no synchronous machines,	main dimensions, armature slots and windi on salient pole synchronous machine. Design magnetic circuits and rotor of non salient po	ngs, sl of rot	ot details for the for of salient pole chine.
Reference Books:			
1. A.K. Sawhney, A C (2017), ISBN-10: 81 2. Mittle V.N., Arvii Distributors (2009)	Course in Electrical Machine Design, Dhanpa 177001019, ISBN-13: 978-8177001013. nd Mittal, Design of Electrical Machine , ISBN-13: 978-81-8014-126-3, ISBN: 81-8014	at Rai s, Sta 1-126-8	& Co. (P) Limited ndard Publishers 3.
3. V. Rajini, V. S. Na ISBN-10: 93325855 4. K. G. Upadhyay De	garajan Electrical Machine Design Pearson 71, ISBN-13: 978-9332585577 sign of Electrical Machines (2010) Publisher	Educa	ation (May 2018) Age International
ISBN: 97881224228	325, 8122422829.		-
Course Outcomes			
At the end of this course	e, students will be able to		
1. Identify, list and de associated to electri	efine different types of materials, parts, in cal machines and its design terms.	sulato	rs, and the terms
 Explain the specific line Calculate the design and necessary assur 	parameters of an electrical machine for a g nptions as per the Indian standards.	es. iven se	et of specifications
4. Derive the equation aspects for electrica	ns with respect to specific loadings, dimer I machines.	nsions	and other design

	course outcomes - Programme outcomes Mapping Table															
SI.	Course Outcomes	P01	204	EO4	P04	50d	90d	707	PO8	60d	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE557E.1	3	2	2					1		1		1	1	2	1
2	UEE557E.2	3	2	2					1		1		1	2	1	1
3	UEE557E.3	3	3	3	3				1	2	1		1	1	2	1
4	UEE557E.4	3	3	3	2				1		1		2	1	2	1

UEE555N		03 - Credits (3 : 0 : 0)
Hours/Week : 03	Renewable Energy Sources	CIE Marks : 50
Total Hours : 40		SEE Marks : 50

UNIT – I	(10L-0T Hours)
Introduction to Energy Sources: Classification of Energy Resources; Con Resources – Availability and their limitations; Non-Conventional Energy Classification, Advantages, Limitations; Comparison of Conventional and Energy Resources. Solar Energy Basics: Introduction, Solar Constant, Basic Sun-Earth Angles their representation, Solar Radiation Geometry (only theory); Measu Radiation Data – Pyranometer and Pyrheliometer.	ventional Energy ergy Resources – Non-Conventional – definitions and urement of Solar
Solar Thermal Systems: Principle of Conversion of Solar Radiation into Heaters (Flat Plate Collectors), Solar Cookers – Box type, Concentrating driers, Solar Still.	Heat, Solar Water g dish type; Solar
UNIT – II	(10L-0T Hours)
 Solar Electric Systems: Solar Thermal Electric Power Generation – Concentrating Solar Collector (parabolic trough, parabolic dish, Central Advantages and Disadvantages; Solar Photovoltaic – Solar Cell funda panel and array. Solar PV Systems – Street lighting, Domestic lighting pumping systems. Wind Energy: Wind and its Properties, History of Wind Energy. Basic p Energy Conversion Systems (WECS), Classification of WECS, Parts of a V for Power in the wind, Advantages and Disadvantages of WECS 	Solar Pond and Tower Collector). mentals, module, and Solar Water principles of Wind WECS, Derivation
UNIT – III	(10L-0T Hours)
Biomass Energy: Introduction, Photosynthesis process, Biomass converse Biomass Gasification – Principle and Working of Gasifiers, Biogas - proce- factors affecting biogas generation, types of biogas plants–KVIC and Janat Geothermal Energy: Introduction, Geothermal resources (brief descrip- and disadvantages; Applications of Geothermal Energy.	sion technologies; duction of biogas, a model. tion); Advantages
UNIT – IV	(10L-0T Hours)
Energy from Ocean: Tidal Energy – Principle of Tidal Power, Componer Plant (TPP), Classification of Tidal Power Plants, Advantages and Limitation Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, I power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson	ts of Tidal Power n of TPP. Methods of OTEC
cycle (block diagram description of OTEC); Advantages and Limitation of C Emerging Technologies: Fuel Cell, Wave Energy. (Principle of Energy gene diagrams, advantages and limitations).	TEC. ration using block
cycle (block diagram description of OTEC); Advantages and Limitation of C Emerging Technologies: Fuel Cell, Wave Energy. (Principle of Energy gene diagrams, advantages and limitations). Reference Books:	TEC. ration using block
 cycle (block diagram description of OTEC); Advantages and Limitation of C Emerging Technologies: Fuel Cell, Wave Energy. (Principle of Energy gene diagrams, advantages and limitations). Reference Books: A Khan, B. H., Non-Conventional Energy Resources, TMH, New Delhi, 20 Rai, G. D., Non-Conventional Sources of Energy, IV- Edition, Khanna Delhi, 2007 Mukherjee, D., and Chakrabarti, S., Fundamentals of Renewable Energy 	oTEC. ration using block 006. a Publishers, New rgy Systems, New

(For students admitted to I year in 2020-21)

Course Outcomes

At the end of this course, students will be able to

- 1. List and define various parameters and features of solar, wind, biomass, geothermal and ocean energy conversion systems.
- 2. Explain various concepts and theory related to solar, wind, biomass, geothermal and ocean energy conversion systems.
- 3. Evaluate/calculate various parameters related to solar and wind energy conversion systems.
- 4. Relate/articulate the concepts and theories related to solar, wind, biomass, geothermal and ocean energy conversion systems.

						_										
SI.	Course Outcomes	P01	204	PO3	P04	50d	P06	707	80d	60d	PO10	P011	P012	PSO 1	2 OSA	E OSA
1	UEE555N.1	3	1	1				1	1		1		1	2	2	2
2	UEE555N.2	3	1	1				2	1		1		1		3	
3	UEE555N.3	3	2	1				2	1	1	1		1	1	1	2
4	UEE555N.4	3	3	3				2	1		1		2	2	1	3

(For students admitted to I year in 2020-21)

UEE561L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Digital Signal Processing Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

List of Experiments

1.	Generation of Unit step, ramp, exponential and sinusoidal signals
2.	Convolution of two signals
3.	To determine power and energy of the signals
4.	To determine impulse response given y(n) and x(n)
5.	To determine DTFT of given sequence
6.	Circular convolution of two given sequences
7.	Computation of N – point DFT of a given sequence and to plot magnitude and phase
8.	Linear convolution of two sequence using DFT and IDFT

- 9. Circular convolution of two sequences using DFT and IDFT
- 10. Design and implementation of FIR and IIR fitter to meet given specifications.
- 11. Study of DSP starter kits (DSK)
- 12. Linear convolution Using DSK
- 13. Circular Convolution using DSK
- 14. Computation of N point DFT using DSK

Reference Books:

- 1. Digital Signal Processing Principle, algorithms and applications, 4th edition by Proakis, Pearson Education 2012
- 2. Digital Signal Processing by Sanjith K. Mithra Edition, 2013
- 3. Digital Signal Processing by Oppenheim, Pearson Education / PHI, 2015
- 4. Digital Signal Processing by Salivatanam, A Vallavaraj, Gnanapriya, TMH 2011

Course Outcomes:

After completion of the course the students will be able to:

- 1. Develop programs for generating basic signals
- 2. Analyze and execute programs for convolution, DFT, FFT, Impulse Response
- 3. Design and analyze the filters and draw inference with reference to theoretical values

SI.	Course Outcomes	P01	P02	PO3	P04	905	P06	PO7	PO8	PO9	P010	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE661L.1	3	1	1		1	1					1	1		2	1
2	UEE561L.2	3	1	1	1	2						1	1		2	3
3	UEE561L.3	3	1	1	1	2						1	1		3	1

UEE562L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Control System Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

		List of Experiments
	1.	Determine time domain response of second order systems for step input and
		obtain performance parameters.
	2.	
		a) Experiment to draw the speed – torque characteristic of a A.C. servomotor.
		b) Experiment to draw the speed torque characteristic of a D.C. servomotor.
	3.	Design a passive RC lead compensating network for the given specifications, viz.,
		the maximum phase lead and the frequency at which it occurs and to obtain its
		frequency response.
	4.	Study the synchro-transmitter and receiver and obtain output vs input
	-	characteristics.
	5.	Determine experimentally the frequency response of a second -order system and
	c	evaluation of frequency domain specifications.
	0.	Design RC lag compensating network for the given specifications. viz., the
		frequency response
	7	Experiment to draw the frequency response characteristic of a given lag-lead
	7.	compensating network
	8	Design a PID controller and study its effect on steady state error
	9.	Plot the root locus diagram of an open loop transfer function and determine
		range of gain 'k' for stability. Using MATLAB software
	10.	Plot a Bode diagram of an open loop transfer function. Using MATLAB software
	11.	Draw a Nyquist plot of an open loop transfers functions and examine the stability
		of the closed loop system. Using MATLAB software.
Ī	Refere	nce Books:
	1.	Norman S. Nise "Control System Engineering", McGraw Hill, 2010.
	2.	Benjamin C. Kuo, "Automatic Control System", 7th Edition, PHI, 2010.
	3.	Richard C. Dorf Robert H. Bishop "Modern Control Systems", 8th Edition, Addison-
		Wesley,1999
	4.	Katsuhiko Ogata, Modern Control Engineering, Prentice-Hall of India Private
ļ		Limited, 2001
	Course	e Outcomes:
	After c	ompletion of the course the students will be able to:
	1.	Analyze and verify experimental results of a toque- speed characteristic of DC and
		AC servomotor with the frequency response and time response analysis of a second
	2	order control system through conduction.
	2.	Analyze stability of the system through Root Locus, Bode plot and Nyquist plot.
	r	Using IVIA I LAB

3. Analyze Lag, Lead, Lead-Lag compensators network and the effect of P, PI, PD and PID controllers on a control system verify experimental results through conduction.

	Course Outcomes - Programme Outcomes Mapping Table															
SI.	Course Outcomes	P01	P02	EO4	P04	PO5	90d	707	PO8	PO9	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE662L.1	3	1	1		1	1					1	1	1	2	2
2	UEE562L.2	S	2	2	1	2						1	2	1	3	3
3	UEE562L.3	3	2	2	1	2	2					1	2		3	3

(For students admitted to I year in 2020-21)

UEE563L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Analog and Digital Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

	List of Experiments
1.	Design and testing of diode clipping and clamping circuits.
2.	Design of fixed bias and voltage divider bias circuits for BJT.
3.	Design of RC coupled single stage BJT amplifier and determination of the gain,
	frequency response, input and output impedances.
4.	Calculation of hybrid parameters of a CE transistor amplifier
5.	Simplification, realization of Boolean expressions using logic gates /Universal
	gates. (i) Realization of Full adders and Full Subtractors using logic gates (ii)
	Realization of parallel adder/subtractors using 7483 chip
6.	Realization of Binary to Gray Code conversion and vice versa.
7.	MUX / DEMUX-use of 74153, 74139 for arithmetic circuits and code converters
8.	Realization of One/Two bit comparator and study of 7485 magnitude comparator.
9.	Truth table verification of Flip- Flops (i) JK Master slave (ii) T type and (iii) D type
10). Realization of 3 bit counters and MOD- N counter design (7490, 74193).
11	 Shift left; Shift Right; SIPO, SISO, PIPO, PISO, operations using 74S95.
12	2. Ring counter and Johnson counter.
Refere	nce Books:
1.	Jacob Milliman, Christos C. Halkias, Chetan D. Parikh, Integrated Electronics-Analog
	and Digital Circuits and Systems, 2ndedition, Tata McGraw Hill Education Private
	Limited, New Delhi, 2015.
2.	G. K. Mithall, Electronic Devices and Circuits, Khanna Publishers, New Delhi, 1998.
3.	David A. Bell, "Operational Amplifier and Linear ICS", 3rdedition, Oxford, 2012.
4.	Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 9 th
	edition, Pearson/Prentice Hall, India, 2006.
Course	e Outcomes:
After c	ompletion of the course the students will be able to:
1.	Student should be able to select appropriate components and write the
	requirement table based on experiment
2.	Student should be able to write the procedure, simplify the expressions using K-
	map and realize the circuit

3. Student should be able to rig-up the circuit and verify output

	Course Outcomes - Programme Outcomes Mapping Table															
SI.	Course Outcomes	P01	P02	EO4	P04	50d	90d	707	PO8	60d	PO10	P011	P012	PSO 1	PSO 2	PSO 3
1	UEE663L.1	3				1	1					1	1	1	2	1
2	UEE563L.2	3	1		1	2						1	2	1	1	1
3	UEE563L.3	3	2	2	1	2	2					1	2	2	2	2

(For students admitted to I year in 2020-21)

UHS002N	Advanced Quantitative Antitude and	01 - Cre	edits (1 : 0 : 0)								
Hours/Week : 01		CIE	Marks : 50								
Total Hours : 15	SOIT SKIIS	SEE	Marks : 50								
	UNIT – I		(06 Hours)								
Quantitative and Reaso	ning Aptitude skills Training :-										
Speed Maths, Areas and	Volumes, Concept Review, Number Series	and Lette	r Series,								
Coding and Decoding, Concept Review											
	UNIT – II		(03 Hours)								
Verbal Aptitude Skills T	raining:-										
Reading Comprehension	, Listening Comprehension, Concept Review	1									
	UNIT – III		(03 Hours)								
Career Skills:-											
Orientation to competit	ive exams, such as GATE, GRE, GMAT, CAT, UF	'SC, SSC, a	and Bank								
PO. Group Discussion –	Simulation, Orientation to career paths, such	n as core e	engineering, IT								
engineering, public sector	or, banking, sales and marketing, and entrep	reneursh	ip								
	UNIT – IV		(03 Hours)								
Soft Skills:-											
Dressing and Grooming,	Professional Etiquette, E-mail Writing										
Reference Books:-											
1. Objective English - A	rihant Publications										
2. Data Interpretation -	- R.S Agarwal										
3. Objective English Gra	ammar - Kiran Publications										
Course Outcomes:-											
After completion of the	course the students will be able to,										
1. Improve verbal abili	ty skills										
2. Communicate effect	ively & appropriately in real life situation.										
3. Enhance student's p	roblem solving skill.										
4. Prepare for various	public and private sector exams & placemen	it drives.									

	Course O	utc	ome	es -	Pro	grar	nm	e Ul	JTCO	me	s ivi	app	ing	lap	le	
SI.	Course Outcomes	P01	P02	PO3	P04	50d	P06	707	PO8	60d	P010	P011	P012	PSO 1	PSO 2	PSO 3
1	UHS002N.1	3	2	1					2		2	1	2			
2	UHS002N.2	3	2	1					2		2	1	2			
3	UHS002N.3	3	2	1					2		2	1	2			
4	UHS002N.4	3	2	1					2		2	1	2			

UEE651C		03 - Cre	edits (2 : 2 : 0)								
Hours/Week : 04	Power System Analysis and Stability	CIE	Marks : 50								
Total Hours : 52		SEE	Marks : 50								
	UNIT – I		(8L-8THours)								
Power System Represer	ntation: (4L-4T Hours)	_									
Standard symbols of po	wer system components, Single line diagra	m, Per ur	nit system, Per								
unit impedance of 3 p	nase components, Change of base, Per un	hit imped	ance diagram,								
Advantages of per unit system calculations, Formation of Y- bus by inspection method-											
Numerical Problems Symmetrical Three Phase Faults: (AL AT Hours)											
3 - phase short circuit a	t the terminals of unloaded generator. Sub	transient.	Transient and								
Steady state reactance	e. Transients on a transmission line. Sho	rt circuit	currents and								
Reactance of synchrone	ous machines on load and no load. Short	circuit N	1VA-Numerical								
Problems	·····,···,										
	UNIT – II		(6L-6THours)								
Symmetrical Componen	nts: (3L-3T Hours)										
Definition of sequence	components for 3-Phase unbalanced powe	r systems	5, Operator "a"								
and its properties, Exp	pressions for sequence components, Phas	se shift o	of symmetrical								
components in star delta	a transformer bank-Numerical Problems										
Sequence Networks:(3L	-3T Hours)	_									
3- Ph power in terms of	of sequence components, voltage drop due	e to sequ	ence currents,								
sequence impedance a	and sequence networks of power system	element	ts (Alternator,								
nower system elements	Numerical Broblems	sequence	e networks of								
power system elements			(61-6THours)								
Unsymmetrical Fault at	the Terminals Unloaded Generator:(3L-3T I	Hours)	(01 01110010)								
L-G, L-L, L-L-G fault w	ith and without fault impedance at the	terminal	s of unloaded								
generator- derivation f	or connection of sequence network and f	ault curr	ents-Numerical								
Problems											
Unsymmetrical Faults o	n Power Systems:(3L-3T Hours)										
L-G, L-L, L-L-G faults on	unloaded power systems, Open conductor	faults in	power system-								
Numerical Problems											
	UNIT – IV		(6L-6THours)								
Stability Analysis: (3L-3	FHours)	c									
Classification of Power	System Stability, Steady Rotor dynamics,	Swing ec	juation, Power								
Faual Area Criterion: (3)	-27 Hours)	25-INUITIEI									
Foual area criterion – St	ability analysis for sudden change in mecha	nical innu	it nower 3- nh								
fault on Generator term	inals and on transmission line. Expression for	or critical	clearing angle.								
Methods to improve sta	bility of power system-Numerical Problems										
Reference Books:	Reference Books:										
1. K. Uma Rao, "Com	puter Techniques and Models in Power Sys	stems", 1	st Edition, I. K.								
International publis	hing house, 2014.										
2. Nagarath and Kotha	ari, "Modern Power System Analysis", 3rd Ed	lition, TM	H, 2009.								

- 3. W.D. Stevenson, "Elements of Power Systems Analysis", 4th Edition, Mc.Graw Hill Publishers, 2013.
- 4. Hadi Saadat, "Power System Analysis", TMH, Publishers, 4th Edition 2015.

5. V Neelakantan, "Power System Analysis & Stability", Shiva Publishers, 2017

Course Outcomes:

After completion of the course the students will be able to,

- 1. Recall the procedure for drawing the reactance diagrams of power system network and advantages of per unit system representation
- 2. Illustrate the significance of fault analysis, sequence components and power system stability studies
- 3. Derive mathematical expressions for fault currents and rotor angle under different disturbance conditions and stability conditions
- 4. Make use of per unit system and sequence components to carry out symmetrical and unsymmetrical fault analysis

sı.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE651C.1	3	1	1	1		1				1		1	2		1
2	UEE651C.2	3	2	1	1						1		1	2	1	2
3	UEE651C.3	3	2	2	2	1		1	1		1		1	2	1	2
4	UEE651C.4	3	3	3	2	1			1	1	1	1	2	1	1	2

UEE652C		03 - Cre	edits (3 : 0 : 0)								
Hours/Week : 03	Microcontrollers	CIE	Marks : 50								
Total Hours : 40		SEE	Marks : 50								
	UNIT – I		(10 Hours)								
Microprocessors and M	icrocontrollers (4h):										
Basics, Hexadecimal nu	mbers, Hexadecimal addition, Block diagran	n of Com	puter, bus and								
Types of buses, memor	ry address, Introduction of Microprocesso	rs and N	licrocontrollers								
8051, Features, Block diagram, pin diagram, program model, Architecture, PSW, PC, SP,											
Memory Organization											
8051 Assembly Language Programming (2h):											
Introduction to assemb	ly language programming, assembling and	running a	a program, The								
program counter and RC	OM space, data types and directives.										
Addressing Modes (4h):											
Introduction, Addressin	g modes, External Data Moves, Code Mo	emory Re	ead Only Data								
Moves, Indexed Addres	ssing Mode, Programs, PUSH and POP Op	ocodes, p	programs, Data								
exchanges-Programs											
	UNIT – II		(10 Hours)								
Logical and Arithmetic (Dperations (5h):										
Introduction, Arithmet	cic instructions, incrementing and de	ecrement	ing, Addition,								
subtraction, multiplicat	ion and division, decimal arithmetic-Progr	ams, Byt	e level Logical								
Instructions, Bit level log	gical instructions, Rotate and swap instructio	ns, Progr	ams								
Jump and Call Instruction	ons (5n):		ad time a dalawa								
The jump and call progra	am range, jump and call instructions, machin	e cycle al	nd time delays								
generation-programs			(10 Hours)								
8051 I/O and Timer Pro	gramming (6h):		(10110013)								
Introduction 1/O progra	mming 1/0 Bit Maninulation Programming										
Timers programming tir	mers 0 and 1 in 8051 assembly. Counter prog	ramming									
8051 Serial Port and Int	errunt Programming (4h):	,i anning									
Basics of serial commu	nication 8051 connections to RS-232 Seri	al nort n	rogramming in								
8051 assembly Introdu	ction to interrupts										
			(61-6THours)								
8051 Interfacing and Ap	polications (5h):		(02 01110010)								
Interfacing 8051 to LCD.	parallel ADC0809, serial ADC MAX1112, DAC	. Steppe	r motor								
Programming in C for 8	051(4h):	,									
Introduction. Program	ning in C for 8051: data types. Program	s on tim	ne delavs. I/O								
programming.											
Reference Books:											
1. Digital Signal Proce	ssing Principle, algorithms and applications,	, 4 th edit	ion by Proakis,								
Pearson Education	2012		, ,								
2. Kenneth J. Ayala	, "The 8051 Microcontroller Architectu	re, Prog	gramming and								
Applications" 3 rd ed	lition, Cengage, 2007.										
3. Muhammad Ali Ma	zidi and Janice Gillespie Mazidi and Rollin	D. McKin	lay; "The 8051								
Microcontroller and	d Embedded Systems using assembly and (2", 2 nd ec	lition, Pearson,								

(For students admitted to I year in 2020-21)

2012.

- 4. David Calcutt Fred Cowan, Hasan Parchizadeh Elsecier, "8051 Microcontrollers an application based introduction", 2004
- 5. Myke Predko, "Programming and Customizing the 8051 Microcontroller", TMH, 1999, 15th Reprint, 2008.
- 6. Ajay V. Deshmukh; "Microcontrollers-Theory and Applications", TMH, 2005.
- 7. Ramani Kalpathi and Ganesh Raja, "Microcontroller and its applications", 1st revised edition Sanguine Technical publishers, Bangalore-2007.

Course Outcomes:

After completion of the course the students will be able to,

- 1. List and define the features of microcontrollers, instruction set, peripheral devices, addressing modes
- 2. Illustrate and explain architecture of microcontroller, functions of registers, pins, addressing modes, directives, programming instructions, interrupts, and peripheral devices
- 3. Identify the instructions/addressing modes, codes for selecting register banks/timer registers and to make use of appropriate instructions for programs and delay calculation Create, inspect & debug the assembly language instructions/program and re-correct code & assess number of bytes
- 4. Formulate the flowchart & develop assembly level/8051C programme for given application, Design, construct the interfacing circuit and develop programme with microcontroller 8051 for given application

SI.	Course Outcomes	P01	P02	603	P04	P05	90d	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE652C.1	3	3	3	3	3	1	1	1	1	2	2	3	1	3	3
2	UEE652C.2	3	3	3	3	3	1	1	1	1	2	2	3	1	3	3
3	UEE652C.3	3	3	3	3	3	1	1	1	1	2	2	3	1	3	3
4	UEE652C.4	3	3	3	3	3	1	1	1	1	2	2	3	1	3	3

UEE653H		03 - Cre	edits (3 : 0 : 0)
Hours/Week : 03	Management and Entrepreneurship	CIE	Marks : 50
Total Hours :40		SEE	Marks : 50
	UNIT – I		10 Hours
1. Introduction:			

Management: Science, Theory and Practice, Managing; Science and Art? The Functions of Managers, Levels of management, the Systems Model of Management, Management and Society, Social Responsibility and Ethics.

2. Planning:

The Nature and Purpose of Planning, Types of Plans, Steps in Planning, The planning Process, Objective, Management by Objectives, Strategies Policies, and planning Premises, The Strategic planning Process, Effective Implementation of Strategies, Premising and Forecasting, Decision Making the importance and Limitations of Rational Decision Making. Types of Decision making.

3. Organizing:

The nature and Purpose of Organizing, Formal and Informal Organization, Organizational Division : The Department, Organization Level and the Span of Management, The Structure and Process of Organizing, Effective organizing, Basic Departmention, Matrix Organization Strategic Business Units, Line / Staff Authority and Decentralization of Authority and Power, Line and Staff concepts, Functional Authority, Decentralization of Authority, Delegation of Authority, Promoting and Appropriate Organization Culture.

UNIT – II	10 Hours
4.Staffing :	
The System Approach to human Resource Management: An overview of	of the Staffing
Function, Situational Factors affecting Staffing, Selection Process, Te	echniques and
Instruments, Orienting and Socializing New Employees.	
5.Motivation and Leading:	
Motivation : Meaning, importance, , Theories of motivation (Maslow's	need theory,
Expectancy theory, Alderffer's ERG, Two factor (hygiene) and Goal set	etting theory),
Motivational Techniques. Leadership: Meaning, Ingredients of Leadersh	ip, Leadership
Behaviour and Styles, Contingency Approaches to Leadership.	
UNIT – III	10 Hours
6.Communication	
Communication, The Communication Function in Organizations, The C	Communication
Process, Communication in the Enterprise, Barriers and Breakdowns in C	ommunication,
Toward Effective Communication.	
7.Controlling	
The System and Process of Controlling, Control as a Feedback System, Feed for	orward control,
Requirements for Effective Controls, Control Techniques and information	on Technology
Control Techniques: The Budget, Traditional Non budgetary Contro	l, Information
Technology, Productivity and Operation, Direct control versus Preventive Con	trol.
UNIT – IV	10 Hours
8.Entrepreneurship	
Maaning of Entropropour, Evaluation of the Concept, Eulertians of an Entropry	anour Types of

Meaning of Entrepreneur, Evaluation of the Concept, Functions of an Entrepreneur, Types of

(For students admitted to I year in 2020-21)

Entrepreneur, Intrapreneur - an Emerging Class, Concept of Entrepreneurship, steps in process, Role of entrepreneurs in Economic entrepreneurial Development; Entrepreneurship in India, Entrepreneurship — Barriers.

9. Micro Small and Medium Enterprises (MSME): Definition: Characteristics : Need and rational; Objectives; Scope; role of MSME in Economic Development. Advantages of MSME, steps to start an MSME - government policy towards MSME; Impact of Liberalization, Privatization, Globalization MSME, Effect of WTO / GATT

10. Institutional Support: Diflerent Schemes: TITSOK, KIADB, KSSIDC, KSIMC, DIc Single window Agency; MSME, NISC; SIDBI, KSFC.

11. Preparation of Project: Meaning of Project, Project Identification, Project Report Contents; Formulation; Project Appraisal Identification of Business Opportunities; Market Feasibility Studies; Technical Feasibility Studies; Financial Feasibility Studies and Social Feasibility Studies (in brief).

Reference Books:

- 1. Fremont E. Kast, James E Rosenzweig, Organization and Management, McGraw-Hill, 2nd Edition.
- 2. Tripati and Reddy, Principales of Management, TMH, 4th Edition, ISBN: 9780070220881, 2010.
- 3. Entrepreneurship Development S. S. Khanka S. Chand and Co.
- 4. Entrepreneurship Development Small Business Enterprises Poornima M. Charantimath – Pearson Eduction - 2006. 5th - Edition 2009..
- 5. David H.Holt, Entrepreneurship ; New Venture Creation, Prentice Hall, 1991, ISBN -10:0132826747
- 6. Peter F Drucker Innovation and Entrepreneurship, Harper Collins Publication, 1993, ISBN: 13:978-0-06-085113-2

Course Outcomes:

After completion of the course the students will be able to,

- 1. Students should be able to explore and apply the basic concepts of Management and apply the principles of management.
- 2. Students should be able to apply the entrepreneurial qualities and skill under real world practical conditions.
- 3. Students should be able to analyze the functions of management and entrepreneurship and apply them to practical situations.
- 4. Students should be able to ascertain various channels provided by government of India to initiate business enterprise.

SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE653H.1	3							1		1		1			1
2	UEE653H.2	3	1						1		1		1			1
3	UEE653H.3	3	3	2	2	1			1		1		1			2
4	UEE653H.4	3	3	3	3	1			1	1	1		2			2

UEE654E Hours/Week : 03 Total Hours : 40	Modern Control Theory	03 - Cro CIE SEE	edits (3 : 0 : 0) Marks : 50 Marks : 50
	UNIT – I		(10 Hours)
State Variable Analysis a Introduction, state space canonical variables. Derivation of transfer fue Diagonalization, Eigen variable	and Design: ce representation using physical variable, Inction from state model: Inlues, Eigen vectors, Solution of state equat	phase jons.	variable and
	UNIT – II		(10 Hours)
Solution State of Transit Solution of state equat Laplace transformation, controllability and obser Pole Placement Techniq Stability improvements pole place placement	tion Matrix: ion, state transition matrix and its prope , power series method, Cayley- Hamilto vability methods. ues: by state feedback, necessary and sufficier	rties, com on metho nt conditio	putation using od, concept of on for arbitrary
	UNIT – III		(10 Hours)
Design of Controllers: Introduction and Design Design of Compensators Lead compensator, Lag of Non-Linear Systems: Introduction behavior of friction, backlash, dead a points stability of nonline	of Proportional (P), Integral (I), Differential compensator and Lag-lead compensator usi UNIT – IV of non linear system common physical n cone, relay multivariable non linearity. Phase ear system.	(D), PI, PI ng freque ion-linear se plane n	D and PID ncy domain. (10 Hours) ly - saturation, nethod singular
Liapunov Stability Criter Liapunov function, direc Liapunov's direct metho Krasvskii's method.	ia: t method of Liapunov and the linear syste od, construction of Liapunov functions fo	m, Hurwi or non lir	tz criterion and lear system by
 Reference Books: 1. Benjamin C. Kuo and Wiley and Sons, 2003 2. Nagoor Kani, "Advan 3. Parvatikar K, "Mode 	Farid Golnaraghi, "Automatic Control Syst 3. ced Control Theory" 2 nd Edition RBA Public rn control Theory" 1 st Edition, PRISM Publi	cems", VIII cations 20 ications, 2	- edition, John 14. 016.
Course Outcomes:		,	
 After completion of the of Analyse both linear a Compute eigen value equation, state trans Design the control parameters. Analyze stability imp 	course the students will be able to, and nonlinear system using state space met es & eigen vectors in state equation and So ition matrix and its properties. ler, compensators and state regulator provements by state feedback, state observ	hods. blve the S observer er and Lia	olution of state using system punov criteria.

SI.	Course Outcomes	P01	P02	EO4	P04	50d	90d	707	PO8	60d	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE654E.1	3	3	3	1	3			1				2	1	3	1
2	UEE654E.2	3	3	3	1	2			1				2	1	3	1
3	UEE654E.3	3	3	3	1	3			1				2	1	3	1
4	UEE654E.4	3	3	3	1	3			1				2	1	3	1

UEE656N	Fundamentals of Wind Energy Conver	03 -	Credits (3 : 0 : 0)							
Hours/Week : 03	Systems		CIE Marks : 50							
Total Hours : 40	Systems	9	SEE Marks : 50							
	UNIT – I		(10L-0T Hours)							
Introduction: Historica	l Development (BC – 20th Century); H	istorical D	evelopment (20th							
Century – 1980s); Rece	e Nature c	of the Wind, origin								
of wind; Wind Energy	Potential; Offshore Wind Energy; Mode	ern Wind T	Turbines; Wind Vs							
Conventional power generation.										
	UNIT – II		(10L-0T Hours)							
Wind Resource Ass	essment: Introduction – Spatial	variation,	Time variation;							
Characteristics of stead	y wind; Weibull wind speed distribution	function;	Vertical profiles of							
steady wind; Wind rose	; Energy content of wind; Resource asse	ssment.								
	UNIT – III		(10L-0T Hours)							
Aerodynamics: Introdu	ıction; Aerofoil – Two dimensional the	ory ,Relat,	ive wind velocity,							
Stall control; Wind flow	v models – Wind flow pattern; Axial mor	nentum th	eory; Momentum							
theory for rotating wa	ke; Blade element theory, Strip theory	; Tip losse	es and correction;							
Wind Machine Characte	eristics.									
	UNIT – IV		(10L-0T Hours)							
Wind Turbines: Introdu	uction; Classification of Wind Turbines;	Wind Turl	oine Components;							
Basic principles of win	d energy extraction; Extraction of wir	d turbine	power(Numerical							
problems)- Weibull dis	tribution-Wind power generation curve	e-Betz's La	w-Modes of wind							
power generation.										
Reference Books:										
1. Siraj Ahmed, Wind E	nergy- Theory and Practice, Prentice Hal	l of India,	New Delhi,2010							
2. D. P. Kothari, S.	Umashankar, Wind Energy Systems	and App	olications, Narosa							
publishers,2017										
3. Khan B. H., Non-Conv	ventional Energy Resources, Tata McGra	w Hill, 200)9.							
Course Outcomes										
At the end of this course	e, students will be able to									
1. list and define vario	us parameters and features of wind ene	rgy conver	sion systems.							
2. Explain various cond	cepts and theory related to wind energy	conversion	n systems.							
3. Evaluate/calculate v	various parameters related to wind ener	gy convers	ion systems.							
4. Relate/articulate the	e concepts and theories related to wind	energy co	nversion systems.							

	Course O	ult	UIII	= 3 -	FIU	grai			attu	nie	2 141	ahh	iiig	Iau	JE	
SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE656N.1	3	1	1				1	1		1		1	1	2	1
2	UEE656N.2	3	1	1				2	1		1		1	2	1	2
3	UEE656N.3	3	2	1				2	1	1	1		1	1	2	1
4	UEE656N.4	3	3	3				2	1		1		2	1	2	

UEE661L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Microcontrollers and IoT Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50
	List of Experiments	
Part A - Assembly Lange	uage Programming	
1. Addition of two 8	bit numbers, 16 bit numbers, array of 8 bit	numbers, average of an
diidy 2 Subtraction of two	9 hit numbers, 16 hit numbers	
2. Subtraction of two	digit numbers, 10 bit numbers	
4 Multiplication Divis	sion	
5 Arranging an array	of number in ascending/descending order	
6. To find maximum/r	minimum number of an array	
7. Block of data transf	fer- Internal RAM. Internal RAM to external F	RAM
8. To find number of	positive and negative numbers in an array	
9. Code Conversion-B	CD to Hex, Hex to BCD	
10. Counters-Binary, B	CD	
Part B-IOT Programmin	g	
1. Familiarization with	n Arduino/Raspberry Pi and perform necessa	ry software installation.
2. To interface LED/B	uzzer with Arduino Raspberry Pi and write a	program to turn ON LED
for 1 sec after ever	y 2 seconds	
3. To interface Push b	outton/Digital sensor (IR/LDR) with Arduino/	Raspberry Pi and write a
program to turn ON	I LED when push button is pressed or at sens	sor detection.
4. To interface DHT1	1 sensor with Arduino/Raspberry Pi and w	vrite a program to print
temperature and h	umidity readings.	
5. To interface motor	using relay with Arduino/Raspberry Pl and	write a program to turn
6 To interface DISD	In button is pressed.	to a program to print
temperature and h	umidity readings on it	te a program to print
7 To interface Blueto	ooth with Arduino/Raspherry Pi and write a	nrogram to send sensor
data to smart phon	e using Bluetooth	
8. To interface Bluet	ooth with Arduino/Raspberry Pi and write	a program to turn LED
ON/OFF when I'/'O	' is received from smartphone using Bluetoo	th.
9. Write a program of	n Arduino/Raspberry Pi to upload temperati	ure and humidity data to
Thingspeak cloud		
10. Write a program o	n Arduino/Raspberry Pi to retrieve temper	ature and humidity data
from Thingspeak cl	oud	
11. To install MySQL da	atabase on Raspberry Pi and perform basic Se	QL queries.
12. Write a program or	n Arduino/Raspberry Pi to publish temperatu	ire data to MQTT broker
13. Write a program or data and print it.	n Arduino/Raspberry Pi to subscribe to MQT	T broker for temperature
14. Write a program	to create TCP server on Arduino Raspber	ry Pi and respond with
humidity data to T	CP client when requested.	
15. Write a program	to create UDP server on Arduino Raspber	rry Pi and respond with
humidity data to U	DP client when requested.	

(For students admitted to I year in 2020-21)

Reference Books:

- 1. Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming and Applications" 3rd edition, Cengage, 2007.
- 2. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C", 2nd edition, Pearson, 2012.
- 3. David Calcutt Fred Cowan, Hasan Parchizadeh Elsecier, "8051 Microcontrollers an application based introduction", 2004.

Course Outcomes:

After completion of the course the students will be able to:

- 1. Develop and verify Assembly Language Programes for the specified applications
- 2. Analyze and execute the Assembly Language Programes in Microcontroller kit
- 3. Interface and analyze the functioning of peripheral devices with microcontroller

SI.	Course Outcomes	P01	P02	PO3	P04	50d	90d	707	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE661L.1	3	1	1		1	1					1	1		1	1
2	UEE561L.2	3	1	1	1	2						1	1		2	2
3	UEE561L.3	3	1	1	1	2						1	1		2	2

UEE662L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	Electrical AutoCAD Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

		List of Experiments
	1.	Installation and Basic Commands of Auto CAD package
	2.	Drawing the basic diagrams for familiarization with Auto CAD
	3.	Drawing the cross sectional elevation of XLPE cable
	4.	Drawing the line diagram of DOL and Star – Delta starter
	5.	Drawing the half sectional elevation of pin insulator
	6.	Drawing the single line diagrams of a substations for the specified incoming and outgoing components
	7.	Development and drawing of Simplex, Single layer Progressive Lap winding for DC
	_	machine with specified details
	8.	Development and drawing of Simplex, Single layer retrogressive Lap winding for DC machine with specified details
	9.	Development and drawing of Simplex, Double layer progressive Lap winding for DC machine with specified details
	10.	Development and drawing of Duplex, Single layer progressive Lap winding for DC
		machine with specified details
	11.	Development and drawing of Simplex, Single layer Progressive Wave winding for DC
	17	machine with specified details
	12.	machine with specified details
	13.	Development and drawing of Simplex, Single layer retrogressive Wave winding for DC
		machine with specified details
	14.	Drawing the layout of residential and workshop plans
	15.	Drawing the Assembly of single phase and three phase core type transformer
	16.	Drawing the Assembly of Rotor, Stator of DC Generator and Alternator Assembly
		domain specifications.
	Refe	erence Books:
		1. Devalapur, S F, "Textbook of Electrical Drafting", 7th Edition, Eastern Book
		Promoters, Belgaum, 2006
		2. A.K. Sawhney, A Course in Electrical Machine Design, Dhanpat Rai & Co. (P) Limited
		(2017), ISBN-10: 8177001019, ISBN-13: 978-8177001013.
		3. Mittle V.N., Arvind Mittal, Design of Electrical Machines, Standard Publishers
		Distributors (2009), ISBN-13: 978-81-8014-126-3, ISBN: 81-8014-126-8.
(Cou	rse Outcomes:
/	Afte	r completion of the course the students will be able to:
		 Identify the tools and commands in the AutoCAD software
		2. Draw and develop the engineering diagrams of the specified electrical components as per the proposed scale
		Analyze the constructional details of electrical devices and components
		a a manyee the constructional actails of circuitor actaics and components

	Course Outcomes - Programme Outcomes Mapping Table															
SI.	Course Outcomes	P01	P02	EO4	P04	PO5	90d	707	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE662L.1	3	1	1		3	1					1	1	2	1	3
2	UEE562L.2	3	2	2	1	3	1					1	2	2	1	3
3	UEE562L.3	3	2	2	1	3	2					1	2	2		3

UEE665P		02- Credits (0 : 0 : 4)				
Hours/Week : 0L+4P	Mini Project	CIE Marks : 50				
Total Hours : 48		SEE Marks : 50				

Mini project is an important integral part of BE (E&EE) program. Mini project is outcome of 3 years of engineering program and is expected to test the learning skills of a student. It reflects quality of teaching-learning process in the department. Mini Project helps students to explore and strengthen the understanding of fundamentals through practical application of theoretical concepts. Mini Project will boost student's skills and widen their horizon of thinking. It acts like a beginners guide to do larger projects later in their career.

Course Outcomes

After undergoing the internship, students will be able to:

- 1. Identify engineering problems associated with electrical & electronics engineering and interdisciplinary research.
- 2. Analyze Data and interpret contemporary tools & resources to analyze / validate the solutions for engineering problems.
- 3. Communicate effectively and present the work to technical audience.
- 4. Prepare quality technical report with detailed analysis and representation of the executed work.

_																
SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE665P.1	3			3					3			3	2	3	1
2	UEE665P.2		3	3		3	3						3	1	1	2
3	UEE665P.3	3	3	3	2	2	1				3		3	2	2	3
4	UEE665P.4	2	1								3		3	2	1	2
(For students admitted to I year in 2020-21)

UHS003N		01 - Cre	edits (1 : 0 : 0)							
Hours/Week : 01	Career Planning & Professional Skills	CIE	Marks : 50							
Total Hours : 15	_	SEE	Marks : 50							
	UNIT – I		(06 Hours)							
Quantitative and Reaso	ning, Aptitude Skills Training:									
Number Properties, Per	centages, Linear and Circular Arrangement C	order and	Rank							
	UNIT – II		(03 Hours)							
Verbal Aptitude Skills Training:-										
Reading Comprehension, Listening Comprehension, Concept Review										
	UNIT – III		(03 Hours)							
Career Skills:-										
Orientation to competit	ive exams, such as GATE, GRE, GMAT, CAT, L	JPSC, SSC	, and Bank PO.							
Group Discussion – Sim	nulation, Orientation to career paths, such	as core	engineering, IT							
engineering, public sector	or, banking, sales and marketing, and entrep	reneursh	ір							
	UNIT – IV		(03 Hours)							
Soft Skills:										
Six-Step Planning Proce	ss, Problem Solving through Design Thinki	ng, Confl	ict Resolution							
through Assertiveness a	and Cooperation, Matrix, Confidence thro	ugh Body	y Language &							
Preparing and Delivering	a Presentation, Self-Motivation									
Reference Books:-										
1. Master Guide, "\	/erbal Ability", Ethnus Consultancy Services F	vt Ltd., 2	018.							
2. Master Guide, "C	Quantitative Aptitude", Ethnus Consultancy S	ervices P	vt Ltd., 2018.							
Master Guide, "\	/erbal Ability", Ethnus Consultancy Services F	vt Ltd., 2	018.							
4. Learner's Notes,	"Goal Setting", Ethnus Consultancy Services	Pvt Ltd.,	2018.							
5. Learner's Notes,	"Motivation", Ethnus Consultancy Services P	'vt Ltd., 2	018.							
Course Outcomes:-										
After completion of the	course the students will be able to,									
1. Imbibe a high lev	vel of Think, decide and act according to the	e needs a	nd demands of							
the current situa	tion.									
2. Fix the errors i	in coding by the various strategies of ar	nalytical	and reasoning							
techniques										
3. Clear the aptitud	e and general interviews by soft skills									
Apply suitable so	oft skills in their career									

				_			_							
 Course O	utc	ome	es -	Pro	grar	nme	e Oi	utco	me	s M	app	ing	Tab	le
	٦		8	1		5	4	3)	0	1	2	1	2

SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UHS003N.1	2	1	1		1	1	1		1	1	2	1			
2	UHS003N.2	2	1	1	1			1	1	2	1	1	1			
3	UHS003N.3	2	1	2	2			1	1	1	1	1	1			
4	UHS003N.4	2	1	3	3			1	1	1		2	2			

(For students admitted to I year in 2020-21)

UEE751C		03 - Ci	redits (3 : 0 : 0)					
Hours/Week : 03	Computer Application to Power System		Marks : 50					
Total Hours :40		SEE	E Marks : 50					
	UNIT – I		(10 Hours)					
Network Topology: Intr	oduction, Elementary Graph Theory, conne	ected gr	aph, sub graph					
Loop, Cut-set, Tree, Co-	tree, Basic loops, Basic cut-set. Incidence I	Matrices	: Element-node					
incidence matrix A (B	Bus-incidence matrix), Branch path incid	lence m	natrix K, Basic					
(Fundamental) cut-set incidence matrix B, Augmented cut-set matrix, Basic loop incidence								
matrix C, Augmented loc	op incidence matrix							
Primitive Network: Ger	neral primitive element, Impedance and A	dmittan	ce form of the					
primitive element, Primit	tive network matrices							
Network Matrices: Intr	roduction, Derivation of Y _{bus} = [A][y][A] ^T ,	Format	ion of Y _{bus} by					
inspection method. Mo	odeling: Transmission lines, Transformers,	Loads	and generator					
internal impedance. Exar	nples							
	UNIT – II		(10 Hours)					
Load Flow Studies: Intro	oduction, Power Flow Equation, Classificati	on of B	uses, Operating					
Constraints, Data for Loa	d Flow: System data, Generator bus data, Lo	ad Data						
Gauss-SeidalMethod: A	lgorithm for GS method, Modification of a	lgorithm	n to include PV					
buses, Q- limit violations	, Acceleration of convergence and examples							
Newton-Raphson Metho	od: Introduction, Algorithm for NR method i	n polar o	coordinates and					
rectangular coordinates.	Fast Decoupled Load Flow and examples.							
	UNIT – III		(10 Hours)					
Economic Operations	of Power System: Introduction, Performa	ance cu	rves, Economic					
generation scheduling ne	eglecting losses and generator limits, Econor	nic gene	ration including					
generator limits and ne	eglecting losses, Iterative technique, Econo	omic Dis	patch Including					
Transmission Losses: Ap	proximation penalty factor, Derivation of tra	ansmissio	on loss formula.					
Introduction to optimal	scheduling for hydrothermal plants. Proble	m formu	lation, solution					
procedure and algorithm	1							
	UNIT – IV		(10 Hours)					
Transient Stability Studi	es: Introduction, swing equation, machine e	quations	s. Power system					
equations								
Modeling: Modeling of e	excitation systems: Introduction, DC Excitation	on syster	n, AC Excitation					
system. Type 1, Type 2 a	nd Type 3 excitation. Load Model: Static, Dy	namic lo	ad models					
Reference Books:								
1. Stag.G.W., and El-A	Abaid,A.H.,"Computer Methodsin Power S	ystem A	nalysis", (2019					
Edition), MEDTECH,	A Division of Scientific International 2019.							
2. K.UmaRao, "Comp	uter Techniques and Model in Power	Systems	", 2 nd edition,					
I.K.International. 20	14.							

- 3. Singh,L.P., "Advanced Power System Analysis and Dynamics", 6th edition, New Age International(P) Ltd, NewDelhi, 2014.
- 4. Nagrath, I.J., and Kothari, D.P., "Modern Power System Analysis", 4th edition, TMH, 2011.
- 5. Pai., M.A., "Computer Techniques in Power System Analysis", 2nd edition, TMH, 2006.

(For students admitted to I year in 2020-21)

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Recall/define network topology concepts, primitive network, types of buses, load flow studies, economic scheduling and transient studies in power systems.
- 2. Illustrate/describe need for network topology, primitive network, Y_{bus}, types of buses, load flow studies, optimal scheduling of thermal power plants, transient stability of power systems and computer model of DC excitation systems.
- 3. Derive Y_{bus}, Z_{bus}, load flow algorithms by different methods, necessary condition of economic scheduling of thermal generators and swing equations for transient stability of power systems.
- 4. Determine power system parameters using network topology, real and reactive power flow, optimal scheduling of thermal generators, solve swing equations and decide the suitable methods for economic scheduling for thermal generators.

SI.	Course Outcomes	P01	P02	PO3	P04	P05	P06	P07	P08	909	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE751C.1	3							1		1		1	2	1	
2	UEE751C.2	3	1						1		1		1	1	2	1
3	UEE751C.3	3	3	2	2	1			1		1		1	3	1	1
4	UEE751C.4	3	3	3	3	1			1	1	1		2		1	

(For students admitted to I year in 2020-21)

UEE752C		03 - Cre	edits (3 : 0 : 0)	
Hours/Week : 03	High Voltage, Switchgear & Protection	CIE Marks : 50		
Total Hours :40		SEE	Marks : 50	
	·			
	UNIT – I		(10 Hours)	
Generation of HV AC ar	nd DC Voltage: L-06 Hours			
Classification of high vo	ltages, HVAC-transformer, Need for cascade	e connect	ion, working of	
transformer units conne	ected in cascade, Series resonant circuit – pr	inciple of	operation and	
advantages, Tesla coil.	HV – DC voltage doublers circuit, Cock cr	oft – Wa	lton type high	
voltage DC set. Calculat	tion of high voltage regulation, ripple and opt	timum nu	mber of stages	
for minimum voltage dr	op, Important applications of high voltages.			
Generation of Impulse	Voltage and Current: L-04 Hours			
Introduction to standar	d lightning and switching impulse voltages.	Analysis (of single -stage	
impulse generator, exp	ression for output impulse voltage. Multist	tage impi	ulse generator,	
working of Mark impuls	e generator, Rating of impulse generator, Co	mponent	s of multistage	
impulse generator.				
	UNIT – II		(10 Hours)	
Measurement of High	Voltages: L-05Hours			
Electrostatic voltmeter	- principle, construction and limitation.	Chubb a	and Fortessue	
method for HVDC mea	surements. Series resistance micro ammete	r. Standar	rd Sphere gap	

method for HVDC measurements. Series resistance micro ammeter, Standard Sphere measurements for HVAC, HVDC and factors affecting the measurements.

Insulation Testing Techniques: L-05Hours

Dielectric loss and loss angle measurement using Schering Bridge, Transformer ratios arm bridge, Breakdown in solid dielectrics: Intrinsic breakdown, Breakdown of liquid dielectrics: Suspended particle theory, electronic Breakdown, cavity breakdown(bubble's theory)

(10 Hours)

Protective Relaying: L-05 Hours

Relay definition, Required qualities of Protective Relaying, Primary and Back up protection, Classification of protective Relaying, Induction type Non-directional over current relay, Directional relay. Differential relay- Principle of operation, Percentage Differential relay, Distance relays: Impedance Relay, Reactance Relay, Mho Relay, R-X diagram and Buchholz Relay.

Protection Schemes: L-05 Hours

Merz-Price protection for generator, Merz -Price protection of Transformer. Inter turn fault, Induction motor protection-Protection against phase fault, ground fault and single phasing.

UNIT – IV

Static	Relays	:1-05	Hours	

Introduction, Basic construction and classification. Definite time lag static over current relay, Inverse time static over current relay, Static over voltage and under voltage relay, Microprocessor based over current relay-block diagram approach.

Principles of Circuit Breakers : L-05 Hours

Principles of AC circuit breaking, Principles of DC circuit breaking, Initiation of arc, maintenance of arc, Arc interruption- High resistance and Low resistance interruption. Re striking voltage, Recovery voltage and resistance switching. Types of circuit breakers- Air break and air blast circuit breakers, SF6 circuit breakers- Puffer type and Non Puffer type.

(For students admitted to I year in 2020-21)

Reference Books:

- 1. Sunil S. Rao "Switchgear and Protection and Power Systems", (13th edition), Khanna Publishers, 2008
- 2. J. B. Gupta "Switchgear and Protection", (2nd edition), Katson Publisher, 2013
- 3. Ravindarnath B. "Power System Protection and Switchgear", 2nd edition, New age International, 2008.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Select suitable generating and measuring instrument for testing high voltage equipment's.
- 2. Estimate the ripple factor, maximum voltage and relay timing for different high voltage instruments.
- 3. Compare the different insulating material, protection equipment's for high voltage applications
- 4. Apply the suitable protection equipments for selected rating of current and voltage ratings

_						-							_			
SI.	Course Outcomes	P01	204	PO3	P04	50d	90d	707	80d	60d	PO10	P011	P012	10Sq	20S4	PSO3
1	UEE752C.1	3	1		1	3	1		1		1		1	1	2	1
2	UEE752C.2	3	2	1	1				1		1		1	1	2	1
3	UEE752C.3	3	3	2	2	1			1		1		1	1	2	2
4	UEE752C.4	3	3	3	2	1			1	1	1	1	2	1	1	3

UHS753C		03 - Credits (3 : 0 :							
Hours/Week : 03	Intellectual Property Rights	CIE	Marks : 50						
Total Hours :40		SEE	Marks : 50						
	UNIT – I		(10 Hours)						
Introduction to IPRS: In	nportance of human creativity and its reco	ognition a	and protection.						
Concepts of Property ar	nd Rights. Different forms of IPRs. Role of IPR	s in R&D.							
Patents: Meaning of P	Vatent, Objectives and Value of Patent. C	riteria to	r Patentability.						
and romodios for infring	methods Patents. Govt. use of inventions,	Infringer	nent of Patent						
			(10 Hours)						
Prior art Searching: Pr	ior art- Tangible versus Intangible prior ar	t Search	strategy: key						
words structures sea	lences use of operators database for se	arching_	free and naid						
disclosed versus claimer	dences, use of operators, database for se	arening							
Patent Drafting: Types (of specification, descriptions, drawing, claim	drafting.							
Filing Requirement of p	atent: Work flow chart in obtaining Patents	. Forms to	o be submitted.						
filing mechanism thro	ugh Individual patent office and PCT ro	oute. Rec	quest for re -						
examination and revoca	ition. Term of Patent and Patent renewal.		1						
	UNIT – III		(10 Hours)						
Trade-Marks: Meaning	and functions of Trade Marks. Concept	of Distin	ctiveness and						
Trade Marks registration. Trade Marks- Challenges in Non- Conventional Marks.									
Infringement of Trade	Marks and remedies for infringement. Dor	nain nam	es and Trade						
Names.									
Industrial Design: Defir	nition of a design. Inclusive and Exclusive D	esigns; In	dustrial Design						
registration in India. Infi	ringement of Design and remedies for infring	gement.	1						
	UNIT – IV		(10 Hours)						
Copyright: Nature of Co	opyright, Subject-matter, Requirements to	protect C	opyright under						
the Law, Neighboring/F	Related Rights. Authorship rights. Copyrigh	t in the I	Digital Context.						
Transfer of Copyright ar	nd Infringement and remedies. Fair dealing a	nd online	streaming.						
Confidential Informati	on and Trade Secrets: Introduction, Co	nditions	of protection.						
Essentials for an action	for breach of confidence.								
Reference Books:	tuel Duene attack and " Ord Ed. Eastern Levelle								
1. P. Naryan, Intellec	tual Property Law, 3 rd Ed, Eastern Law Hous	se, 2007.	2010						
2. Dr. S. R. IVIyneni, L	aw of intellectual Property, 9 th edition, Asia		se, 2019.						
3. Dr. G. B Reddy, In Deprint edition 202	o definition of the second s	Law Agen	icy. Hydrabad,						
A N.B. Subbaram S.	U. Viewanathan "Hand back Indian Datant Law	and Dra	ctico" Drintore						
4. N.K. SUDDardini., S.	1+d 2008	anu, Pra	clice Printers						
5 Cornish "Intellectu	al Pronerty Rights" Universal nublications								
6. Dr. B. I. Wadehra	"Law Relating to Intellectual Property" 5 th	edition	Universal Law						
publishing Co. Dehl	i.								
7. SWAYAM / NPTL/	MOOCS/ We blinks/ Internet sources/ You	Tube vide	eos and other						
materials / notes	·,, ·····························								

(For students admitted to I year in 2020-21)

Course Outcomes:

After successful completion of this course the student should be able to:

- 1. Identify criteria to fit one's own intellectual work in particular form of IPRs.
- 2. Apply statutory provisions and procedure to protect different forms of IPRs at national and international level.
- 3. Analyze rights and responsibilities of holder of Patent, Copyright, Trademark, Industrial design etc.
- 4. Develop skill of making search using modern tools and techniques.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UHS753C.1						3									
2	UHS753C.2			2		1	2	2	2		2		2			
3	UHS753C.3						3	2	2		2		1			
4	UHS753C.4					2				1	1		2			

UEE754E		03 - Cre	edits (3 : 0 : 0)						
Hours/Week : 03	Solar Photovoltaic System Design	CIE I	Marks : 50						
Total Hours :40		SEE	Marks : 50						
	UNIT – I		(10 Hours)						
 – solar radiation spectrum, diffuse & beam radiation and solar radiation measurement. Chapter-02: Solar Cells – I-V & P-V characteristics; Technologies; Parameters; Factors affecting electricity generated; series, parallel and series & parallel connections; Numerical problems. 									
	UNIT – II		(10 Hours)						
Chapter-03: SPV modu generated; I-V & P-V ch parallel; Mismatch in ser Chapter-04: Balance of to cover functions, wo problems.	ule – Ratings, standard parameters; factor aracteristics; connection of modules in serior ries and parallel connections, Introduction to System (BoS) - Batteries; Charge Controllers rking, types, features, typical specification	ors affect es, paralle arrays. s; MPPT; is and co	ting electricity el and series & Inverters. (BoS est). Numerical						
	UNIT – III		(10 Hours)						
Chapter-06: Introductio Installation, Maintenand installation check list. Isl campus to study installa	n – stand-alone, grid connected & hybrid s ce, Troubleshooting and Safety of SPV powe landing – Definition, Causes. Types and Prote tions.	olar PV p er plants; ection. Fie	ower systems; Solar PV plant eld visits within						
	UNIT – IV		(10 Hours)						
Chapter-07: Introduction integration – Design Me Chapter-08: Grid con Configurations & Compu- power plants.	on – Configurations of SPV systems, SF thodology for Stand-alone SPV systems. nected Solar PV Power Systems (GCS onents of GCSPVPS, GCSPVPS Design for sm	V syster PVPS) – nall applic	n design and Introduction, cations and for						
 Reference Books: 1. Chetan Singh Sol Applications, PHI Le 2. Chetan Singh Solar Technicians, Trainer 3. M S Imamuaa and F 4. Tiwari, G. N and G Publishing House, N 	anki, Solar Photovoltaics – Fundamenta earning Private Limited, New Delhi, 2009 nki, Solar Photovoltaic Technology and Sys rs and Engineers, PHI Learning Private Limite P. Helm Photovoltaic System Technology A Eu hosal, M. K., Fundamentals of Renewable E Jew Delhi, 2007	als, Tech stems – , d, New De uropean H Energy So	nologies and A Manual for elhi, 2014 land book. urces, Narosa						
Course Outcomes:									
After successful complet 1. Define parameters, systems. They shou aspects of SPV syste 2. Compute/estimate	tion of this course the student will be able to components & features of solar cell, modu Id be able to describe installation, O&M, tro ems, performance of SPV systems for different	: le, panel, ubleshoo : loads ar	array and SPV ting and safety nd applications						

(For students admitted to I year in 2020-21)

based on numerical problems.

- 3. Compare and analyze output of different solar PV systems.
- 4. Operate, test, design & discuss a solar PV system stand alone or grid connected based on typical loads

sı.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE754E.1	3	1		1	3	1		1		1		1	1	2	1
2	UEE754E.2	3	2	1	1				1		1		1	1	1	3
3	UEE754E.3	3	3	2	2	1			1		1		1	1	1	1
4	UEE754E.4	3	3	3	2	1			1	1	1	1	2	1	3	1

UEE 732N		03 - Credits (3 : 0 : 0)				
Hours/Week : 03	Electrical Safety for Engineers	CIE Marks : 50				
Total Hours :40		SEE Marks : 50				
		·				
	UNIT – I	(10 Hours)				
Introduction to Electrica	al Safety, Electric Shocks and their Preventic	on:				
OSHA standards on ele	ctrical safety, objectives of safety and sec	urity measures, hazards				
associated with electric	current and voltage, principles of electrication	al safety, approaches to				
prevent accidents, revie	w of IE rules & acts.					
Primary and secondary	electrical shocks, possibilities of getting	electrical shock and its				
severity, medical analys	is of electric shocks and its effects, shocks du	ue to flash/ Spark over's				
prevention of shocks, sa	fety precautions against contact shocks, flas	h shocks, burns				
	UNIT – II	(10 Hours)				
First Aid in Case of Elect	tric Shock:					
First principles of action	s after electric shock, first aid-artificial resp	iration methods, Cardiad				
Pulmonary Resuscitation	n, accident management and safety manager	ment.				
Equipment Earthing and	d System Neutral Earthing:					
Earthing, need for eart	hing, types of earthing, distinction betweer	system grounding and				
equipment grounding, f	unctional requirement of earthing system, to	echnical consideration of				
station earthing system,	step and touch potential, neutral grounding	; and its advantages				
		(10 Hours)				
Safety in Residential, Co	ommercial and Agricultural Installations:					
Domestic wiring metho	ods and installations, safety requirements,	shocks from domestic				
equipment-water taps-	wet walls-agricultural pumps, types of ca	ibles and specifications,				
underground cables, be	st practices with use of electricity.					
Accident investigation:	stigate investigation report writing Case	studios of assidants in				
HESCOM/GESCOM rogic	stigate, investigation report writing. Case	studies of accidents in				
HESCOW/GESCOW TEgic		(10 Hours)				
Electrical System Safety						
Safety devices and th	eir characteristics safety clearances and	creenage distances ir				
electrical plants line sur	anorts insulators					
Circuit Breakers: Arc nh	enomenon principles of arc extinction oil &	air hlast hreakers				
Protective Relays: Funda	amental requirements of relaying classificati	ion of relays				
Protection of Alternator	s. Transformers, Bus bars and Lines, protecti	ion against over voltages				
Reference Books:						
1. S. Rao., R. K. Jain.	H.L. Saluia., "Electrical safety, fire safety	Engineering and safety				
management". Kha	nna Publishers New Delhi.2 nd Edition. 2021					
2. Pradeep Chaturved	li. "Energy management policy, planning ar	nd utilization". Concept				
Publishing company	v. New Delhi. 1997.	,,				
3. V. K.Mehta, Rohit	Mehta, "Principles of Power Systems". S	Chand Publications, 4 th				
Edition, 2008.						
4. The Electricity Act,	2003, https://cercind.gov.in/Act-with-amend	dment.pdf				
· · ·	- •					

(For students admitted to I year in 2020-21)

Course Outcomes:

After successful completion of this course the student will be able to:

- 1. List and explain the objectives and security measures in electrical safety systems
- 2. Illustrate approaches to prevent accidents in electrical systems and describe the operation of safety devices
- 3. Suggest the methods to rescue & first aid approaches in case of electrical accidents
- 4. Assess & provide solutions to a practical case study and write an investigation report with independent conclusions.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	90d	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE732N.1	2	1		1		1		1		1		1			
2	UEE732N.2	2	2	1	1				1		1		1			
3	UEE732N.3	2	2	2	2				1		1		1			
4	UEE732N.4	2	2	2	2				1	1	1	1	2			

(For students admitted to I year in 2020-21)

UEE761L		01 - Credits (0 : 0 : 1)	
Hours/Week : 02	rs/Week : 02 Power System Simulation Laboratory		
Total Hours : 26		SEE Marks : 50	

	List of Experiments
	1. ABCD parameters for short and medium network of transmission lines.
	a. Verification of Symmetry and Reciprocity of the network.
	b. Determination of regulation and efficiency.
	2. To determine fault currents and voltages in a single line systems with star- delta
	transformers at a specified location for SLGF, DLGF, LL and check boundary conditions.
	3. YBus formation of power systems with and without mutual coupling by singular
	transformation and inspection method.
	4. Determination of power angle diagrams for salient and non-salient pole synchronous
	m/cs, reluctance power, excitation emf and regulation.
	5. Determine stability of power system using Swing equation. To determine critical
	clearing time for SMIB system by varying inertia constant, line parameters/fault
	location.
	6. Write a program to perform load flow study using Gauss-Seidel method (only pq Bus
	not exceeding 4-buses).
	7. Formation of Jacobian matrix for a given power system not exceeding 4 buses in polar
	Coordinates (no PV buses).
	8. Write a program to perform load flow study using Fast-Decouple Load Flow Method
9	9. Optimal Generator Scheduling for Thermal power plants connected to load dispatch
	center.
Re	ference Books:
1.	Stag.G.W., and EI-Abaid, A.H., "Computer Methods in Power System Analysis", (2019
	Edition), MEDTECH, A Division of Scientific International 2019.
2.	K.UmaRao, "Computer Techniques and Model in Power Systems", 2nd edition,
	I.K.International, 2014.
3.	Singh,L.P., "Advanced Power System Analysis and Dynamics", 6th edition, New Age
	International(P) Ltd, New Delhi, 2014.
Со	urse Outcomes:
Aft	ter completion of the course the students shall be able to:
1.	Identify and formulate the electrical network parameters for load flow analysis using
	electrical topology
2.	Model and simulate the steady state analysis of power system network

3. Evaluate generator scheduling and economic load dispatch in power plant

	Course Outcomes - Programme Outcomes Mapping Table															
sı.	Course Outcomes	P01	PO2	٤Od	P04	50d	P06	20d	80d	P09	P010	P011	P012	PSO1	PSO2	PSO3
1	UEE761L.1	3	1	1		1	1					1	1	3		2
2	UEE761L.2	3	1	1	1							1	1	3		2
3	UEE761L.3	3	1	1	1							1	1	2		2

(For students admitted to I year in 2020-21)

UEE762L		01 - Credits (0 : 0 : 1)
Hours/Week : 02	High Voltage and Relay Laboratory	CIE Marks : 50
Total Hours : 26		SEE Marks : 50

List of Experiments

- 1. Operating characteristics of static Under/Over Voltage relay.
- 2. Operating characteristics of Microcontroller over voltage relay (DMT and IDMT)
- 3. Operating characteristics of Electro-Mechanical over current relay.
- 4. Operating characteristics of Electro-Mechanical Earth fault relay.
- 5. Operating characteristics of Microcontroller over current relay (DMT and IDMT).
- 6. Operating characteristics of Numerical Under / Over voltage relay (DMT and IDMT).
- 7. Operating characteristics of static Over Current relay (DMT).
- 8. Break down strength of transformer oil.
- 9. Experiment on field plotting using electrodes.
- 10. Measurement of high AC and DC voltage using Sphere-gap.
- 11. Flash-over characteristics of uniform and non-uniform Gaps for HVAC
 - a. Plane-Plane Electrodes (Uniform field)
 - b. Point-Plane Electrodes (Non-uniform field)
- 12. Flash-over characteristics of Uniform and non-uniform fields for Direct high voltage
 - a. Plane-Plane Electrodes
 - b. Point positive, Plane negative
 - c. Point negative, Plane positive

Reference Books:

- 1. Sunil Rao "Switchgear and Protection and Power Systmes", (13th edition), Khanna Publishers, 2008
- 2. J.B.Gupta "Switchgear and Protection", (2nd edition), Katson Publisher, 2013.
- 3. Ravindarnath B. "Power System Protection and Switchgear", 2nd edition, New age International, 2008.

Course Outcomes:

After completion of the course the students shall be able to:

- 1. Test the breakdown strength of various insulating material by different methods.
- 2. Select the appropriate relays for different current ratings based on their characteristics.
- 3. Estimate the flash over characteristics for uniform and non-uniform fields for high voltage applications.

			11 0													
SI.	Course Outcomes	P01	204	E04	P04	905	P06	707	80d	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE762L.1	3	1	1		1	1					1	1	1	2	1
2	UEE762L.2	3	1	1	1							1	1	1	1	1
3	UEE762L.3	3	1	1	1							1	1	1	2	3

UEE764I		02 - Credits (0 : 0 : 2)
Hours/Week :	Internship	CIE Marks : 70
Total Hours :		SEE Marks : 30

(For students admitted to I year in 2020-21)

All the students have to undergo mandatory internship/training in any one of the reputed industry/ research institute. The training program has to be taken up during the vacation between 6th and 7thsemester. The duration of the training program should be for period of 4 weeks. A report on the training is to be submitted. The supervisor/ guide from industry shall allot 70 marks of the CIE and the other 30 by the internal evaluation committee. SEE evaluation will be made by a committee comprising of HoD as Chairman/his nominee, internship coordinator and a senior faculty. The SEE will be a Technical Seminar on the industrial training.

Course Outcomes

After undergoing the internship, students shall be able to:

- 1. Test the theoretical learning in practical situations by accomplishing the tasks assigned during the internship period.
- 2. Operate the systems/ devices independently and tabulate the experimental results in consultation with supervisor.
- 3. Apply various soft skills such as time management, positive attitude and communication skills during performance of the tasks assigned in internship organization.
- 4. Analyze the real time functioning of internship organization.

			•			D					• • • • •	~~~				
SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE764I.1	1	1			2						2		2	1	2
2	UEE764I.2	1	1			2	1		1		2	2		3	1	2
3	UEE764I.3	1				1	1					2		2		1
4	UEE764I.4	1							1	3	S	2		2		1

UEE765S		01 - Credits (0 : 0 : 2)
Hours/Week : 08	Technical Seminar	CIE Marks : 50
Total Hours :		SEE Marks : 50

Technical seminar is an important integral part of BE (E&EE) program. Seminar is outcome of 4 years of engineering program and is expected to test the learning skills of a student. It reflects quality of teaching-learning process in the department. Seminar work will remain as an epitome of your entire professional career.

Seminar should be based on thrust areas in state of art technologies. Students should identify the topic of seminar and finalize in consultation with coordinator. Students should understand the topic and compile the report in standard format and present in front of Panel of Examiners respective Programme.

Course Outcomes

At the end of this course, students will be able to

- 1. Enhance the knowledge on engineering problems associated with electrical & electronics engineering and interdisciplinary research.
- 2. Data analysis and interpretation of contemporary tools & resources to analyze / validate the solutions of engineering problems
- 3. Communicate effectively to meet the technical seminar requirements and present the work to technical audience.
- 4. Prepare quality technical report with detailed analysis and representation of selected topic.

SI.	Course Outcomes	01	02	03	04	05	90	07	08	60	010	011	012	S01	S02	SO3
		4	4		4	9	4	4	4	4	d	d	d	d	d	d
1	UEE765S.1	3	3						3	3	3	1	3	1	1	1
2	UEE765S.2	3	3		2		2		3	3	3	2	2	1	1	2
3	UEE765S.3	3	3	3	3	3	3	1	3	3	3	3	3	2	1	1
4	UEE765S.4	1	1	2					3	3	3	1	2	2	2	3

(For students admitted to I year in 2020-21)

UEE851E		03 - Credits (3	:0 : 0)									
Hours/Week : 03	Power System Operation and Control	CIE Marks :	50									
Total Hours :40		SEE Marks :	50									
	UNIT – I	(10 H	ours)									
Automatic Generation Control: Introduction, Control loops of power systems, Modeling of												
Automatic Voltage Regulator (AVR), performance AVR, modeling of Automatic Load												
Frequency Control (ALFC) of single area systems, performance of AVR, ALFC of two area												
systems, expression for tie-line flow and frequency deviation, tie-line bias-control, area												
control error and parallel operation of generators												
	UNIT – II	(10 H	ours)									
Control of Voltage ar	d Reactive Power: Introduction, generation and a	bsorption of rea	active									
power, relation betw	een voltage, power and reactive power at nodes	, methods of vo	oltage									
control: Shunt react	or, shunt capacitor, series capacitor, tap chang	ing transforme	and									
voltage stability DV a	nd OV surves voltage collapse, provention of volt	A, ISC and STAT	COIVI.									
Voltage Stability, PV a	Ind QV curves, voltage conapse, prevention of volta		ours)									
Unit Commitmont: S	tatement of the problem, need and importance (of unit constrai	ours)									
constraints, Must Ru methods, Dynamic Function, Security co Generation Schedulin	unit commitment, spinning reserve, Thermal Unit Constraints, Other constraints, Hydro constraints, Must Run, Fuel constraints, Unit commitment Solution methods: Priority-List methods, Dynamic Programming solution. Reliability Considerations, Patton's Security Function, Security constrained Optimal Unit Commitment, Start-up considerations, Optimal Generation Scheduling reliability in Unit commitment											
		(10 H	ours)									
Power System Secu system contingency a calculation of networ Power System State likeli-hood weighted matrix formulations, l	Power System Security: Introduction, factors affecting power system security, power system contingency analysis, detection of network problems, network sensitivity methods, calculation of network sensitivity factor, contingency ranking Power System State Estimation: Introduction, power system state estimation, maximum likeli-hood weighted least-square estimation, maximum likeli- hood concept with example, matrix formulations. Detection and Identification of had massurements											
Reference Books:												
1. Woodand BAJF	Wallenberg, "Power Generation, Operation and G	Control", 2nd Ed	ition,									
John Wiley and	Sons, 2007.	DUU 4000										
2. G.L. Kusic, "Con	nputer Aided Power System Analysis", 2nd edition	, PHI, 1992.	Conc									
3. I.J.E WIIIer, Re	active Power Control in Electric Power Systems ,	John wiely and	Sons									
A Nagrath I I	and Kothari D.P. "Modern Power System	m Analysis"	(1th									
edition) TMH 2	014	III Anarysis ,	(4									
5. Prabha Kundur	. "Power System Stability and Control". 9th reprint	. TMH. 2009.										
Course Outcomes:		, ,										
After completion of th	ne course the students will be able to,											
1. Develop the m regulate the free	odel of AVR and ALFC applied to the thermal ge equency and terminal voltage.	enerators in-ord	ler to									
		l cummorizo in f										

(For students admitted to I year in 2020-21)

of stability issues.

- 3. Identify various compensating device and design the compensating devices applied to power systems.
- 4. Develop the unit commitment table and find the optimum combination of thermal generators for supplying the demand.

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	90d	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE851E.1	3							1		1		1	1	2	1
2	UEE851E.2	3	1						1		1		1	2	1	
3	UEE851E.3	3	3	2	2	1			1		1		1	1	3	1
4	UEE851E.4	3	3	3	3	1			1	1	1		2	1	1	

UEE852E	France Concernation Audit and Demon	03 - Credits (3 : 0 : 0)									
Hours/Week : 03	Energy Conservation, Audit and Deman		E Marks : 50								
Total Hours :40	Side Management	SE	E Marks : 50								
	UNIT – I		(10 Hours)								
Energy Scenario: Introduction to Energy; Units and Conversions; GDP, GNP and Per Capita											
Energy Consumption; Re	enewable Energy Act, International Energy	Agency, C	DECD and Kyoto								
Protocol (only overview)											
Economic Analysis of Energy: Economic analysis of investment, Cash Flows and CF diagrams,											
Economic analysis tech	nique – Simple payback period metho	d, Discoui	nted cash flow								
method or Time adjusti	ment technique, Net present value met	nod, Prese	ent value index								
method or Profitability	index method, internal rate of return	method,	Accounting on								
(SPCA) Single Payment I	Prosent Worth (SPDW) Uniform Series C	ment Com									
Sinking Fund Payment (SEP) Uniform Series Present Worth (USP)	//////////////////////////////////////	l Recovery (CR)								
Simple Numerical proble	ems).	v, capital									
	UNIT – II		(10 Hours)								
Motors: Introduction.	Aotor Characteristics - Speed, Slip & Ef	iciency. N	Notor Selection:								
Determination of energy	zv saving. Energy saving options in ov	ersized mo	otors. Effect of								
variation of voltage on p	performance of motor, Effect on efficience	y due to v	ariation in load;								
Energy Efficient Motor	s, Choice of energy efficient motor,	Factors A	ffecting Energy								
Efficiency, Rewinding Ef	fects on Energy Efficiency, Standards ar	d Star Lab	eling of Energy								
Efficient Induction Moto	rs.										
Lighting: Introduction,	Terms and definitions – Lumen, Lux, Lo	ad efficac	cy, Lamp circuit								
efficacy, Color renderin	g index (CRI); Characteristic of differen	t types of	lamps. Energy								
saving opportunities in	lighting. Criteria for Energy Efficient Li	shting. De	signing Lighting								
system – Indoor and Out	tdoor. Effect of reduction in supply voltag	e on energ	gy consumption.								
Timers and occupancy se	ensors.										
	UNIT – III		(10 Hours)								
Energy Management a	nd Audit: Energy management; Develo	bing energ	gy use profiles;								
Sankey Diagram; Proces	ss flow diagrams; Material and energy	balance; I	Energy auditing								
Instruments.	ar anargy audit Caana of anargy audit	Tunos of	operate audit								
Broliminary operay audit	Detailed operay audit:	Types of	energy addit -								
Fremmary energy addit			(10 Hours)								
Energy Conservation: In	atroduction Results of energy conserva	tion Princ	inles of energy								
conservation Energy co	nservation planning Energy conservation	Δct · Fner	gy conservation								
in residential and comm	ercial sectors. Energy conservation in trar	sportation	considerations								
for Energy conservatio	in industry. Energy conservation	n electric	ity generation.								
transmission and distribution	ution, Energy conservation in agricultural	ector.	, , ,								
Demand Side Manager	nent: Introduction to DSM – Definition	, Evolutio	n, Benefits and								
Scope; Role of Energy (Companies, Load Management, Applicat	on of Loa	d Control, DSM								
Implementation Issues, S	Strategies to implement and Promote DSN	I, Custome	er acceptance of								
DSM, Environment & DS	M, International experience with DSM, DS	M in India.									

(For students admitted to I year in 2020-21)

Reference Books:

- 1. Suresh Kumar Soni and Manoj Nair, Energy Conservation and Audit, Satya Prakashan, New Delhi, 2010
- 2. Rajiv Shankar, Energy Auditing in Electrical Utilities, Viva Books, New Delhi 2010
- 3. Larry C. White, Philip S. Schmidt, David R. Brown, "Industrial Energy Management Systems", Hemisphere Publishing Corp, New York.
- 4. Albert Thumann, "Fundamentals of Energy Engineering", Prentice Hall Inc, Englewood Cliffs, New Jersey.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Define/list different energy resources, energy management/audits, energy efficient motors, lighting terminologies and demand side management terminologies.
- 2. Describe/explain energy economic methods, energy audit methods, lighting criteria and DSM techniques
- 3. Compute/determine numerical problems and compare & contrast on selection of energy economic techniques, lighting criterion, energy efficient motors and energy alternative from DSM techniques
- 4. Evaluate various methods of energy conservation & DSM in different sectors like agriculture, commercial, transpiration and domestic and design & develop methods/techniques for energy conservation, audit & management

SI.	Course Outcomes	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
1	UEE852E.1	3							1		1		1	1	1	1
2	UEE852E.2	3	1						1		1		1	1	1	1
3	UEE852E.3	3	3	2	2	1			1		1		1	1	2	3
4	UEE852E.4	3	3	3	3	1			1	1	1		2	1	1	3

UEE853E		03 - Credits (3 : 0 : 0)
Hours/Week : 03	Smart Grid	CIE Marks : 50
Total Hours :40		SEE Marks : 50

UNIT – I	(10LHours)								
 Smart Grid Architectural Designs: Introduction, Today's Grid versus the Small Independence and Security Act of 2007: Rationale for the Smart Grid, Intelligence, Power System Enhancement, Communication and Standards, En Economics, General View of the Smart Grid Market Drivers, Stakeholder Role Working Definition of the Smart Grid Based on Performance Measures, Architecture, Functions of Smart Grid Components. Smart Grid Communications and Measurement Technology: Comm Measurement, Monitoring, PMU, Smart Meters, and Measurements Technology Google Mapping Tools, Multiagent Systems (MAS) Technology, Microgrid Comparison. 	art Grid, Energy Computational ivironment and s and Function, Representative nunication and plogies, GIS and and Smart Grid								
Performance Analysis Tools for Smart Grid Design: Introduction to Load	I Flow Studies,								
Challenges to Load Flow in Smart Grid and Weaknesses of the Present Load	Flow Methods,								
Load, Flow State of the Art: Classical, Extended Formulations, and Algorithm	ms, Congestion								
Management, Effect, Load Flow for Smart Grid Design, DSOPF Application to t	he Smart Grid.								
UNIT – II	(10L Hours)								
UNIT – II(10L Hours)Network Theorems: Introduction to Stability, Strengths and Weaknesses of Existing VoltageStability Analysis Tools, Voltage Stability Assessment, Voltage Stability AssessmentTechniques, Voltage Stability Indexing, Analysis Techniques for Steady-State VoltageStability Studies, Application and Implementation Plan of Voltage Stability, OptimizingStability Constraint through Preventive Control of Voltage Stability, Angle StabilityAssessment.Computation Tools for Smart Grid: Introduction to Computational Tools, Decision SupportTools, Optimization Techniques, Classical Optimization Method, Heuristic Optimization,Evolutionary Computational Techniques, Pareto Method.									
UNIT – III	(10L Hours)								
Pathway for Designing Smart Grid:: Introduction to Smart Grid Pathway Design, Barriers and Solutions to Smart Grid Development, Solution Pathways for Designing Smart Grid Using Advanced Optimization and Control Techniques for Selection Functions, General Level Automation, Bulk Power Systems Automation of the Smart Grid at Transmission Level, Distribution System, Automation Requirement of the Power Grid, End User/Appliance Level of the Smart Grid, Applications for Adaptive Control and Optimization. Renewable Energy and Storage: Renewable Energy Resources, Sustainable Energy Options for the Smart Grid, Penetration and Variability Issues Associated with Sustainable Energy Technology, Demand Response Issues, Electric Vehicles and Plug-in Hybrids, PHEV Technology, Environmental Implications, Storage Technologies, Tax Credits.									
	(10L Hours)								
Interoperability, Standards, and Cyber Security: Introduction, Interoperability Smart Grid Cyber Security, Cyber Security and Possible Operation Methodology for Other Users.	lity, Standards, for Improving								

(For students admitted to I year in 2020-21)

Research, Education, and Training for the Smart Grid: Introduction, Research Areas for Smart Grid Development, Research Activities in the Smart Grid, Multidisciplinary Research Activities, Smart Grid Education, Training and Professional Development.

Case Studies and Test beds for the Smart Grid:

Introduction, Demonstration Projects, Advanced Metering, Microgrid with Renewable Energy, Power System Unit Commitment (UC) Problem, ADP for Optimal Network Reconfiguration in Distribution Automation, Case Study of RER Integration, Testbeds and Benchmark Systems, Challenges of Smart Transmission, Benefits of Smart Transmission.

Reference Books:

- 1. James Momoh., "Smart Grid, Fundamentals of Design and Analysis", (1st Edition), Wiley, 2012.
- 2. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.
- 3. Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications" Wiley, 2012.

Course Outcomes:

After completion of the course the students will be able to,

- 1. Identify the smart measuring instruments for two way communication of each components in grid.
- 2. Apply the suitable load flow analysis technique for exiting distribution system.
- 3. Evaluate the optimal value for distribution system including renewable energy and storage systems.
- 4. Formulate the existing distribution for the conversion to smartgrid using standards as for the case studies.

SI.	Course Outcomes	P01	204	PO3	P04	50d	90d	P07	80d	60d	P010	P011	P012	PSO1	202q	PSO3
1	UEE853E.1	3	1		1	3	1		1		2		1	1	3	1
2	UEE853E.2	3	2	1	1				1		1		1	1	2	3
3	UEE853E.3	3	3	2	2	1			1		1		1	1	2	1
4	UEE853E.4	3	2	3	2	1			1	1	1	1	2	1	3	2

UEE871P		13 - Credits (0 : 0 : 26)
Hours/Week : 26	Project Work	CIE Marks : 50
Total Hours : 260		SEE Marks : 50

(OL-OT-26P Hours)

Students have to take up Design methodology and planning of project work, Description of Concepts and Technical Details, Incorporation of Suggestions made by examiners during CIE and prepare the project implementation schedule. A certified report with project demonstration and a seminar is to be presented by the students. The seminar should highlight – Broad project area of their project work carried out. CIE of 50 marks will be allotted by the examiners as per the rubrics. For SEE, student has to make a presentation of the work carried out to Project Evaluation Committee (PEC- Project coordinator, Internal Examiner, External Examiner). PEC will allot SEE marks for 50.

Course Outcomes

At the end of this course, students will be able to:

- 1. Identify, formulate & analyze the engineering problems associated with electrical & electronics engineering and interdisciplinary research.
- 2. Design & implement proposed solutions for complex engineering problems to meet specified objectives by analyzing / validating the design / solutions of engineering problems using contemporary tools & resources.
- 3. Prepare engineering documents and make effective presentation to communicate effectively and collaboratively with detailed analysis and interpretation of results to yield valid conclusions.
- 4. Demonstrate social, ethical cultural & engineering professional responsibilities.

-						_						_				
SI.	Course Outcomes	P01	P02	PO3	P04	P05	90d	P07	P08	60d	PO10	P011	PO12	PSO1	PSO2	PSO3
1	UEE871P.1	3	3						3	3	3	1	3	3	3	3
2	UEE871P.2	3	3		2		2		3	3	3	2	2	3	3	3
3	UEE871P.3	3	3	3	3	3	3	1	3	3	3	3	3	3	3	3
4	UEE871P.4	1	1	2					3	3	3	1	2	3	3	3

Thank You

End of the Document